分析 (1)由線面垂直的判定定理得出BD⊥平面A1ACC1,再由面面垂直的判定定理得出平面C1BD⊥平面A1ACC1;
(2)連接B1C交BC1于O,連接OD,證明OD∥B1A,由線面平行的判定定理證明AB1∥平面C1BD.
解答 證明:(1)因?yàn)椤鰽BC是等邊三角形,D為AC的中點(diǎn),
所以BD⊥AC,
又因?yàn)锳A1⊥底面ABC,
所以AA1⊥BD,
根據(jù)線面垂直的判定定理得BD⊥平面A1ACC1,
又因?yàn)锽D?平面C1BD,
所以平面C1BD⊥平面A1ACC1;
(2)如圖所示,
連接B1C交BC1于O,連接OD,
因?yàn)樗倪呅蜝CC1B1是平行四邊形,
所以點(diǎn)O為B1C的中點(diǎn),
又因?yàn)镈為AC的中點(diǎn),
所以O(shè)D為△AB1C的中位線,
所以O(shè)D∥B1A,
又OD?平面C1BD,AB1?平面C1BD,
所以AB1∥平面C1BD.
點(diǎn)評(píng) 本題考查了空間中的平行與垂直關(guān)系的應(yīng)用問題,也考查了空間想象能力與邏輯思維能力的應(yīng)用問題,是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 11 | B. | 12 | C. | 22 | D. | 23 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1,2,3,4} | B. | {0,1,2) | C. | {1,2} | D. | {3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 144個(gè) | B. | 120個(gè) | C. | 96個(gè) | D. | 72個(gè) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com