隨機(jī)地將編號(hào)為1,2,3的三個(gè)小球放入編號(hào)為1,2,3的三個(gè)盒子中,每個(gè)盒子放入一個(gè)小球,當(dāng)球的編號(hào)與盒子的編號(hào)相同時(shí)叫做“放對(duì)球”,否則叫做“放錯(cuò)球”,設(shè)放對(duì)球的個(gè)數(shù)為ξ.求ξ的分布列.


解:ξ的分布列為

ξ

0

1

2

3

P

0

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:


設(shè)正項(xiàng)等差數(shù)列{an}的前2 011項(xiàng)和等于2 011,則的最小值為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


現(xiàn)有5位同學(xué)準(zhǔn)備一起做一項(xiàng)游戲,他們的身高各不相同.現(xiàn)在要從他們5個(gè)人當(dāng)中選擇出若干人組成A、B兩個(gè)小組,每個(gè)小組都至少有1人,并且要求B組中最矮的那個(gè)同學(xué)的身高要比A組中最高的那個(gè)同學(xué)還要高.則不同的選法共有______種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


 (1+x)3(1+y)4的展開(kāi)式中x2y2的系數(shù)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


下列問(wèn)題屬于超幾何分布的有________.(填序號(hào))

① 拋擲三枚骰子,所得向上的數(shù)是6的骰子的個(gè)數(shù)記為X,求X的概率分布列;

② 有一批種子的發(fā)芽率為70%,現(xiàn)任取10顆種子做發(fā)芽實(shí)驗(yàn),把實(shí)驗(yàn)中發(fā)芽的種子的個(gè)數(shù)記為X,求X的概率分布列;

③ 一盒子中有紅球3只,黃球4只,藍(lán)球5只,現(xiàn)任取3只球,把不是紅色的球的個(gè)數(shù)記為X,求X的概率分布列;

④ 某班級(jí)有男生25人,女生20人,現(xiàn)選派4名學(xué)生參加學(xué)校組織的活動(dòng),班長(zhǎng)必須參加,其中女生人數(shù)記為X,求X的概率分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


黃山旅游公司為了體現(xiàn)尊師重教,在每年暑假期間對(duì)來(lái)黃山旅游的全國(guó)各地教師和學(xué)生,憑教師證和學(xué)生證實(shí)行購(gòu)買(mǎi)門(mén)票優(yōu)惠.某旅游公司組織有22名游客的旅游團(tuán)到黃山旅游,其中有14名教師和8名學(xué)生.但是只有10名教師帶了教師證,6名學(xué)生帶了學(xué)生證.

(1) 在該旅游團(tuán)中隨機(jī)采訪3名游客,求恰有1人持有教師證且持有學(xué)生證者最多1人的概率;

(2) 在該團(tuán)中隨機(jī)采訪3名學(xué)生,設(shè)其中持有學(xué)生證的人數(shù)為隨機(jī)變量ξ,求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為,現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到兩人中有一人取到白球時(shí)即終止,每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的,用ξ表示取球終止所需要的取球次數(shù).

(1) 求袋中原有白球的個(gè)數(shù);

(2) 求隨機(jī)變量ξ的概率分布;

(3) 求甲取到白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


為保護(hù)水資源,宣傳節(jié)約用水,某校4名志愿者準(zhǔn)備去附近的甲、乙、丙三家公園進(jìn)行宣傳活動(dòng),每名志愿者都可以從三家公園中隨機(jī)選擇一家,且每人的選擇相互獨(dú)立.

(1) 求4人恰好選擇了同一家公園的概率;

(2) 設(shè)選擇甲公園的志愿者的人數(shù)為X,試求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


設(shè)D,E分別是△ABC的邊AB,BC上的點(diǎn),AD=AB,BE=BC,若1,λ2為實(shí)數(shù)),則λ1+λ2=________.

查看答案和解析>>

同步練習(xí)冊(cè)答案