精英家教網 > 高中數學 > 題目詳情
若橢圓的離心率e=,則m值( )
A.3
B.3或
C.
D. 或
【答案】分析:根據橢圓的焦點位置對m分類討論即可.
解答:解:若0<m<5,
則e2===
∴m=3;
若m>5,
則e2==
∴m=
∴m的值為:3或
故選B.
點評:本題考查橢圓的簡單性質,根據橢圓的焦點位置對m分類討論是關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓x2+
y2
b2
=1(0<b<1)
的左焦點為F,左右頂點分別為A,C上頂點為B,過F,B,C三點作⊙P,其中圓心P的坐標為(m,n).
(1)若橢圓的離心率e=
3
2
,求⊙P的方程;
(2)若⊙P的圓心在直線x+y=0上,求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C的方程是
x2
a2
+
y2
b2
=1
(a>b>0),斜率為1的直線l與橢圓C交于A(x1,y1),B(x2,y2)兩點.
(Ⅰ)若橢圓的離心率e=
3
2
,直線l過點M(b,0),且
OA
OB
=
32
5
cot∠AOB
,求橢圓的方程;
(Ⅱ)直線l過橢圓的右焦點F,設向量
OP
=λ(
OA
+
OB
)
(λ>0),若點P在橢圓C上,求λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點為F,點E(
a2
c
,0)
在x軸上,若橢圓的離心率e=
2
2
,且|EF|=1.
(1)求a,b的值;
(2)若過F的直線交橢圓于A,B兩點,且
OA
+
OB
與向量
m
=(4,-
2
)
共線(其中O為坐標原點),求證:
OA
OB
的夾角為
π
2

查看答案和解析>>

科目:高中數學 來源: 題型:

橢圓C的方程
x2
a2
+
y2
b2
=1(a>b>0)
,斜率為1的直L與橢C交于A(x1,y1)B(x2,y2)兩點.
(Ⅰ)若橢圓的離心率e=
3
2
,直線l過點M(b,0),且
OA
OB
=-
12
5
,求橢圓C的方程;
(Ⅱ)直線l過橢圓的右焦點F,設向量
OP
=λ(
OA
+
OB
)(λ>0),若點P在橢C上,λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線y=-x+1與橢圓
x2
a2
+
y2
b2
=1 (a>b>0)
相交于A,B兩點,且OA⊥OB(O為坐標原點),若橢圓的離心率e∈[
1
2
,
2
2
]
,則a的最大值為
 

查看答案和解析>>

同步練習冊答案