【題目】如果函數(shù)f(x)=x3x滿足:對于任意的x1x2∈[0,2],都有|f(x1)-f(x2)|≤a2恒成立,則a的取值范圍是(  )

A. [- ]

B. [- ]

C. (-∞,- ]∪[,+∞)

D. (-∞,- ]∪[,+∞)

【答案】D

【解析】f′(x)=x2-1,

∴當0<x<1時,f′(x)<0,f(x)單調(diào)遞減;

當1<x<2時,f′(x)>0,f(x)單調(diào)遞增.

f(x)=x3xx=1時取到極小值,也是x∈[0,2]上的最小值,

f(x)極小值f(1)=-f(x)最小值

又∵f(0)=0,f(2)=,

∴在x∈[0,2]上,f(x)最大值f(2)=,∵對于任意的x1,x2∈[0,2],

∴都有|f(x1)-f(x2)|≤a2恒成立,

∴只需a2≥|f(x)最大值f(x)最小值|=-(-)=即可,

aa.

故選D.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為Cx萬元,當年產(chǎn)量不足80千件時,Cxx2+10x萬元;當年產(chǎn)量不少于80千件時,Cx=51x+-1 450萬元).通過市場分析,若每件售價為500元時,該廠年內(nèi)生產(chǎn)的商品能全部銷售完

1寫出年利潤L萬元關(guān)于年產(chǎn)量x千件的函數(shù)解析式;

2年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018屆吉林省普通中學高三第二次調(diào)研】某校冬令營有三名男同學A,B,C和三名女同學X,Y,Z,

1)從6人中抽取2人參加知識競賽,求抽取的2人都是男生的概率;

2)若從這3名男生和3名女生中各任選一名,求這2人中包含A且不包含X的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C,其中e為橢圓離心率),焦距為2,過點M4,0)的直線l與橢圓C交于點AB,點BAM之間.又點A,B的中點橫坐標為

)求橢圓C的標準方程;

)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)pf(x)在區(qū)間(1,+∞)上是減函數(shù);q:若x1,x2是方程x2ax20的兩個實根,則不等式m25m3≥|x1x2|對任意實數(shù)a[1,1]恒成立.若p不正確,q正確,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年10月份鄭州市進行了高三學生的體育學業(yè)水平測試,為了考察高中學生的身體素質(zhì)比情況,現(xiàn)抽取了某校1000名(男生800名,女生200名)學生的測試成績,根據(jù)性別按分層抽樣的方法抽取100名進行分析,得到如下統(tǒng)計圖表:

男生測試情況:

抽樣情況

病殘免試

不合格

合格

良好

優(yōu)秀

人數(shù)

5

10

15

47

女生測試情況

抽樣情況

病殘免試

不合格

合格

良好

優(yōu)秀

人數(shù)

2

3

10

2

1)現(xiàn)從抽取的1000名且測試等級為優(yōu)秀的學生中隨機選出兩名學生,求選出的這兩名學生恰好是一男一女的概率;

2)若測試等級為良好優(yōu)秀的學生為體育達人其它等級的學生(含病殘免試非體育達人,根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并回答能否在犯錯誤的概率不超過0.010的前提下認為是否為體育達人與性別有關(guān)?

男性

女性

總計

體育達人

非體育達人

總計

臨界值表:

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

:( ,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標系,曲線的方程為,定點,點是曲線上的動點, 的中點.

(1)求點的軌跡的直角坐標方程;

(2)已知直線軸的交點為,與曲線的交點為,若的中點為,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,二面角的大小為90°,, ,

1)求證: ;

2)試確定的值,使得直線與平面所成的角的正弦值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某三棱錐的三視圖如圖所示,則該三棱錐最長的棱的棱長為( )

A. 3 B. C. D. 2

查看答案和解析>>

同步練習冊答案