7.在極坐標(biāo)系中,圓心為(2,$\frac{π}{4}$),半徑為1的圓的極坐標(biāo)方程是( 。
A.ρ=8sin(θ-$\frac{π}{4}$)B.ρ=8cos(θ-$\frac{π}{4}$)
C.ρ2-4ρcos(θ-$\frac{π}{4}$)+3=0D.ρ2-4ρsin(θ-$\frac{π}{4}$)+3=0

分析 由題意先求出圓心的平面直角坐標(biāo)方程,先求圓的直角坐標(biāo)方程,最后轉(zhuǎn)化為圓的極坐標(biāo)方程.

解答 解:由題意可知,圓心(2,$\frac{π}{4}$)的直角坐標(biāo)為($\sqrt{2}$,$\sqrt{2}$),半徑為1.
得其直角坐標(biāo)方程為(x-$\sqrt{2}$)2+(y-$\sqrt{2}$)2=1,
即x2+y2-2$\sqrt{2}$x-2$\sqrt{2}$y+3=0,
所以所求圓的極坐標(biāo)方程是:ρ2-4ρcos(θ-$\frac{π}{4}$)+3=0.
故選:C

點(diǎn)評 本題是基礎(chǔ)題,考查極坐標(biāo)方程的求法,考查數(shù)形結(jié)合,計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx+$\frac{7a}{x}$,a∈R.
(1)若函數(shù)y=f(x)在其定義域內(nèi)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)y=f(x)在[e,e2]上的最小值為3,求實(shí)數(shù)a的值.(e是自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知△ABC的頂點(diǎn)A,B在圓x2+y2=4上,C在直線l:y=x+2上,且AB∥l.
(1)當(dāng)AB邊通過坐標(biāo)原點(diǎn)O時(shí),求AB的長及△ABC的面積;
(2)當(dāng)∠ABC=90°,且斜邊AC的長最大時(shí),求AB所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=ax3-2ax2+(a+1)x-log2(a2-1)不存在極值點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,-1)B.(1,+∞)C.(1,4]D.(1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ex-kx,x∈R
(1)若k=e,試確定函數(shù)f(x)的單調(diào)區(qū)間;
(2)討論f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知?jiǎng)訄A過定點(diǎn)F(0,1),且與定直線y=-1相切.
(Ⅰ)求動圓圓心M所在曲線C的方程;
(Ⅱ)直線l經(jīng)過曲線C上的點(diǎn)P(x0,y0),且與曲線C在點(diǎn)P的切線垂直,l與曲線C的另一個(gè)交點(diǎn)為Q.
①當(dāng)x0=$\sqrt{2}$時(shí),求△OPQ的面積;
②當(dāng)點(diǎn)P在曲線C上移動時(shí),求線段PQ中點(diǎn)N的軌跡方程以及點(diǎn)N到x軸的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.當(dāng)函數(shù)f(θ)=3sinθ-4cosθ取得最大值時(shí),cosθ=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知A,B的極坐標(biāo)分別為(4,$\frac{2π}{3}$),(2,$\frac{π}{3}$)則直線AB的極坐標(biāo)方程為ρsin(θ+$\frac{π}{6}$)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.馬云同學(xué)向某銀行貸款M萬元,用于購買某件商品,貸款的月利率為5%(按復(fù)利計(jì)算),按照還款合同,馬云同學(xué)每個(gè)月都還款x萬元,20個(gè)月還清,則下列關(guān)系式正確的是( 。
A.20x=MB.20x=M(1+5%)20C.20x<M(1+5%)20D.20x>M(1+5%)20

查看答案和解析>>

同步練習(xí)冊答案