若函數(shù)f(x)滿足f(x+1)=x2-2x,則f(2)=______.

解法一:
∵函數(shù)f(x)滿足:f(x+1)=x2-2x,
令x+1=2,則x=1,
f(2)=12-2×1=-1.
解法二:
∵函數(shù)f(x)滿足:
f(x+1)=x2-2x=x2+2x+1-4(x+1)+3=(x+1)2-4(x+1)+3,
∴f(x)=x2-4x+3,
f(2)=22-4×2+3=-1.
解法三:
∵函數(shù)f(x)滿足:
f(x+1)=x2-2x
僅t=x+1,則x=t-1
則f(t)=(t-1)2-2(t-1)=t2-4t+3
∴f(x)=x2-4x+3,
f(2)=22-4×2+3=-1.
故答案為:-1
分析:解法一:x+1=2,可得x=1,代入f(x+1)=x2-2x,可得答案;
解法二:利用配湊法,求出函數(shù)f(x)的解析式,代入x=2,可得答案;
解法三:利用換元法,求出函數(shù)f(x)的解析式,代入x=2,可得答案;
點評:本題考查的知識點是函數(shù)的值,函數(shù)的解析式,熟練掌握求函數(shù)解析式的各種方法是解答的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2012-2013學年湖北省荊州中學高三(上)第一次質(zhì)量檢測數(shù)學試卷 (理科)(解析版) 題型:選擇題

已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河南省洛陽一中高三(上)期中數(shù)學考前選擇題強化訓練(解析版) 題型:選擇題

已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖北省荊州中學高三(上)第一次質(zhì)量檢測數(shù)學試卷 (文科)(解析版) 題型:選擇題

已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖南省湘西州邊城高級中學高三(上)月考數(shù)學試卷(解析版) 題型:選擇題

已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖南省湘西州古丈縣補習學校高三(上)第一次月考數(shù)學試卷(理科)(解析版) 題型:選擇題

已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

同步練習冊答案