中,∠ACB=90°,CD是斜邊上的高.若AD=9,DB=4,則AC=___.

 

【答案】

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

22、如圖所示,在Rt△ABCD中,∠ACB=90°,點(diǎn)O為三角形外的一點(diǎn),以O(shè)為圓心,OC為半徑的圓與邊AB相切,切點(diǎn)為E,圓O與邊BC相交于D點(diǎn),直徑EF與邊BC交于G點(diǎn),連接AC.
(1)求證:A、E、G、C四點(diǎn)共圓;
(2)求證:AG∥ED.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角三角形ABC中,∠ACB=90°,AB=5,BC=4,AC=3,求三角形ABC繞AB邊旋轉(zhuǎn)一周所成幾何體的表面積及體積精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•濟(jì)南二模)在△ABC中,∠ACB=90°,∠BAC=30°,AB的垂直平分線分別交AB,AC于D、E(圖一),沿DE將△ADE折起,使得平面ADE⊥平面BDEC(圖二).

(1)若F是AB的中點(diǎn),求證:CF∥平面ADE.
(2)P是AC上任意一點(diǎn),求證:平面ACD⊥平面PBE.
(3)P是AC上一點(diǎn),且AC⊥平面PBE,求二面角P-BE-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(幾何證明選講選做題)如圖3,在△ABC中,∠ACB=90°,CE⊥AB于點(diǎn)E,以AE為直徑的圓與AC交于點(diǎn)D,若BE=2AE=4,CD=3,則AC=
 

查看答案和解析>>

同步練習(xí)冊答案