(2011•寧波模擬)設(shè)
OM
=(1,
1
2
),
ON
=(0,1)
,O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P(x,y)滿足0≤
OP
OM
≤1,0≤
OP
ON
≤1
,則z=y-x的最大值是( 。
分析:
OP
OM
= x+
1
2
y
,
OP
ON
=y
0≤
OP
OM
≤1,0≤
OP
ON
≤1
可得
0≤x+
1
2
y≤ 1
0≤y≤1
,利用線性規(guī)劃的知識(shí)可求Z的最大值
解答:解:∵點(diǎn)P(x,y)∴
OP
=(x,y)

OM
=(1,
1
2
),
ON
=(0,1)

OP
OM
= x+
1
2
y
,
OP
ON
=y

0≤
OP
OM
≤1,0≤
OP
ON
≤1

0≤x+
1
2
y≤ 1
0≤y≤1

作出該不等式組所確定的平面區(qū)域,如圖所示的陰影部分,作直線L:y-x=0,然后把直線L向可行域方向平移,
由目標(biāo)函數(shù)Z=y-x可得y=x+Z,則Z為直線y=x+z在y軸的截距,從而可知向上平移是,Z變大,向下平移時(shí),Z變小
到A時(shí)Z有最大值,當(dāng)移到C時(shí)Z最小值
y=1
2x+y=0
可得A(-
1
2
,1
),此時(shí)Z最大=y-x=
3
2

y=0
2x+y=2
可得C(1,0),此時(shí)Z最小=y-x=-1
即Z的最大值為
3
2

故選A
點(diǎn)評(píng):本題以向量的數(shù)量積的坐標(biāo)表示為載體,主要考查了利用線性規(guī)劃的知識(shí)求解目標(biāo)函數(shù)的最值,屬于知識(shí)的綜合性應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•寧波模擬)已知某商場(chǎng)新進(jìn)3000袋奶粉,為檢查其三聚氰胺是否超標(biāo),現(xiàn)采用系統(tǒng)抽樣的方法從中抽取150袋檢查,若第一組抽出的號(hào)碼是11,則第六十一組抽出的號(hào)碼為
1211
1211

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•寧波模擬)如圖,△ABC中,
GA
+
GB
+
GC
=
O
CA
=
a
,
CB
=
b
,若
CP
=m
a
,
CQ
=n
b
,CG∩PQ=H,
CG
=2
CH
,則
1
m
+
1
n
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•寧波模擬)已知:圓x2+y2=1過(guò)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩焦點(diǎn),與橢圓有且僅有兩個(gè)公共點(diǎn):直線y=kx+m與圓x2+y2=1相切,與橢圓
x2
a2
+
y2
b2
=1
相交于A,B兩點(diǎn)記λ=
OA
OB
,且
2
3
≤λ≤
3
4

(Ⅰ)求橢圓的方程;
(Ⅱ)求k的取值范圍;
(Ⅲ)求△OAB的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•寧波模擬)集合P={n|n=lnk,k∈N*},若a,b∈P,則a⊕b∈P,那么運(yùn)算⊕可能是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案