【題目】每年的4月23日為“世界讀書日”,某調查機構對某校學生做了一個是否喜愛閱讀的抽樣調查.該調查機構從該校隨機抽查了100名不同性別的學生(其中男生45名),統(tǒng)計了每個學生一個月的閱讀時間,其閱讀時間(小時)的頻率分布直方圖如圖所示:
(1)求樣本學生一個月閱讀時間的中位數(shù).
(2)已知樣本中閱讀時間低于的女生有30名,請根據(jù)題目信息完成下面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.1的前提下認為閱讀與性別有關.
列聯(lián)表
男 | 女 | 總計 | |
總計 |
附表:
0.15 | 0.10 | 0.05 | |
2.072 | 2.706 | 3.841 |
其中:.
【答案】(1);(2)不能在犯錯誤的概率不超過0.1的前提下認為閱讀與性別有關.
【解析】
(1)頻率為0.5對應的點的橫坐標為中位數(shù);
(2)100名學生中男生45名,女生55名,由頻率分布直方圖知,閱讀時長大于等于的人數(shù)為50人,小于的也有50人,閱讀時間低于的女生有30名,這樣可得列聯(lián)表中的各數(shù),得列聯(lián)表,依據(jù)公式計算,對照附表可得結論.
(1)由題意得,直方圖中第一組,第二組的頻率之和為
.
所以閱讀時間的中位數(shù).
(2)由題意得,男生人數(shù)為45人,因此女生人數(shù)為55人,
由頻率分布直方圖知,閱讀時長大于等于的人數(shù)為人,
故列聯(lián)表補充如下:
男 | 女 | 總計 | |
25 | 25 | 50 | |
20 | 30 | 50 | |
總計 | 45 | 55 | 100 |
的觀測值,所以不能在犯錯誤的概率不超過0.1的前提下認為閱讀與性別有關.
科目:高中數(shù)學 來源: 題型:
【題目】設,其中,函數(shù)在點處的切線方程為,其中.
(1)求和并證明函數(shù)有且僅有一個零點;
(2)當時,恒成立,求最小的整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
(本題滿分15分)已知m>1,直線,
橢圓,分別為橢圓的左、右焦點.
(Ⅰ)當直線過右焦點時,求直線的方程;
(Ⅱ)設直線與橢圓交于兩點,,
的重心分別為.若原點在以線段
為直徑的圓內,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的值域;
(2)在中,角所對的邊分別為,,,求的值;
(3)請敘述余弦定理(寫出其中一個式子即可)并加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了響應國家號召,某校組織部分學生參與了“垃圾分類,從我做起”的知識問卷作答,并將學生的作答結果分為“合格”與“不合格”兩類與“問卷的結果”有關?
不合格 | 合格 | |
男生 | 14 | 16 |
女生 | 10 | 20 |
(1)是否有90%以上的把握認為“性別”與“問卷的結果”有關?
(2)在成績合格的學生中,利用性別進行分層抽樣,共選取9人進行座談,再從這9人中隨機抽取5人發(fā)送獎品,記拿到獎品的男生人數(shù)為X,求X的分布列及數(shù)學期望.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.703 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對同學們而言,冬日的早晨離開暖融融的被窩,總是一個巨大的挑戰(zhàn),而咬牙起床的唯一動力,就是上學能夠不遲到.己知學校要求每天早晨7:15之前到校,7:15之后到校記為遲到.小明每天6:15會被媽媽叫醒起味,吃早餐、洗漱等晨間活動需要半個小時,故每天6:45小明就可以出門去上學.從家到學校的路上,若小明選擇步行到校,則路上所花費的時間相對準確,若以隨機變量(分鐘)表示步行到校的時間,可以認為.若小明選擇騎共享單車上學,雖然騎行速度快于步行,不過由于車況、路況等不確定因素,路上所需時間的隨機性增加,若以隨機變量(分鐘)描述騎車到校的時間,可以認為.若小明選擇坐公交車上學,速度很快,但是由于等車時間、路況等不確定因素,路上所需時間的隨機性進一步增加,若以隨機變量(分鐘)描述坐公交車到校所需的時間,則可以認為.
(1)若某天小明媽媽出差沒在家,小明一覺醒來已經是6:40了,他抓緊時間洗漱更衣,沒吃早飯就出發(fā)了,出門時候是6:50.請問,小明是否有某種出行方案,能夠保證上學不遲到?小明此時的最優(yōu)選擇是什么?
(2)已知共享單車每20分鐘收費一元,若小明本周五天都騎共享單車上學,以隨機變量表示這五天小明上學騎車的費用,求的期望與方差(此小題結果均保留三位有效數(shù)字)
已知若隨機變量,則%,%,%.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義,已知函數(shù)、定義域都是,給出下列命題:
(1)若、都是奇函數(shù),則函數(shù)為奇函數(shù);
(2)若、都是減函數(shù),則函數(shù)為減函數(shù);
(3)若,,則;
(4)若、都是周期函數(shù),則函數(shù)是周期函數(shù).
其中正確命題的個數(shù)為( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將初始溫度為的物體放在室溫恒定為的實驗室里,現(xiàn)等時間間隔測量物體溫度,將第次測量得到的物體溫度記為,已知.已知物體溫度的變化與實驗室和物體溫度差成正比(比例系數(shù)為).給出以下幾個模型,那么能夠描述這些測量數(shù)據(jù)的一個合理模型為__________:(填寫模型對應的序號)
①;②;③.
在上述模型下,設物體溫度從升到所需時間為,從上升到所需時間為,從上升到所需時間為,那么與的大小關系是________(用“”,“”或“”號填空)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com