4.函數(shù)y=x3-3x+1的單調(diào)減區(qū)間為(  )
A.(1,2)B.(-1,1)C.(-2,-1)D.(-2,1)

分析 求函數(shù)的導(dǎo)數(shù),解不等式f′(x)<0即可.

解答 解:計(jì)算的導(dǎo)數(shù)為y′=f′(x)=3x2-3,
由f′(x)=3x2-3<0得-1<x<1,
即函數(shù)的單調(diào)減區(qū)間為(-1,1),
故選:B

點(diǎn)評(píng) 本題主要考查函數(shù)單調(diào)區(qū)間的求解,求函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列結(jié)論中,正確的是( 。
A.$\overrightarrow{0}$+$\overrightarrow{0}$=0
B.對(duì)于任意向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{a}$+$\overrightarrow$=$\overrightarrow$+$\overrightarrow{a}$
C.對(duì)于任意向量$\overrightarrow{a}$,$\overrightarrow$,|$\overrightarrow{a}$+$\overrightarrow$|>0
D.若向量$\overrightarrow{AB}$∥$\overrightarrow{BC}$,且$\overrightarrow{AB}$=2,|$\overrightarrow{BC}$|=2008,則|$\overrightarrow{AB}$+$\overrightarrow{BC}$|=2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)i為虛數(shù)單位,若復(fù)數(shù)z=(m2+2m-8)+(m-2)i是純虛數(shù),則實(shí)數(shù)m=( 。
A.-4B.-4或2C.-2或4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知sinα+cosα=$\frac{\sqrt{6}}{2}$,α∈(0,$\frac{π}{4}$),則sin(α-$\frac{5π}{4}$)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在y軸上截距為1,且與直線2x-3y-7=0的夾角為$\frac{π}{4}$的直線方程是5x-y+1=0或x+5y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.深圳某商場(chǎng)為使銷售空調(diào)和冰箱獲得的總利潤(rùn)達(dá)到最大,對(duì)即將出售的空調(diào)和冰箱相關(guān)數(shù)據(jù)進(jìn)行調(diào)查,得出下表:
資金每臺(tái)空調(diào)或冰箱所需資金(百元)月資金供應(yīng)數(shù)量
(百元)
空調(diào)冰箱
成本3020300
工人工資510110
每臺(tái)利潤(rùn)68 
問:該商場(chǎng)怎樣確定空調(diào)或冰箱的月供應(yīng)量,才能使總利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,(a+b+c)(b+c-a)=3bc,則sinA=( 。
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$±\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)不等式組$\left\{\begin{array}{l}x>0\\ y>0\\ y≤-nx+3n\end{array}\right.$所表示的平面區(qū)域?yàn)镈n,記Dn內(nèi)的格點(diǎn)(格點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個(gè)數(shù)為f(n)(n∈N*
(1)求f(1),f(2)的值及f(n)的表達(dá)式;
(2)若數(shù)列{an}滿足a1=1,${a_{n+1}}-{a_n}=f(n),(n∈{N^•})$,求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)Sn為數(shù)列{bn}的前n項(xiàng)的和,其中${b_n}={2^{f(n)}}$,問是否存在正整數(shù)n,t,使$\frac{{{S_n}-t{b_n}}}{{{S_{n+1}}-t{b_{n+1}}}}<\frac{1}{16}$成立?若存在,求出正整數(shù)n,t;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.集合N={x||x|≤1,x∈R},M={x|x≤0,x∈R},則M∩N=( 。
A.{x|-1≤x≤0}B.{x|x≤0}C.{x|0≤x≤1}D.{x|x≤1}

查看答案和解析>>

同步練習(xí)冊(cè)答案