(本小題滿分14分)
已知函數(shù)為常數(shù),數(shù)列滿足:,,.
(1)當時,求數(shù)列的通項公式;
(2)在(1)的條件下,證明對有:;
(3)若,且對,有,證明:.
(1),
(2)可以用裂項法求和進而證明也可以用數(shù)學歸納法證明
(3)可以用基本不等式證明也可以用導數(shù)證明,還可以利用數(shù)列的單調性證明
【解析】
試題分析:(1)當時,,
兩邊取倒數(shù),得, ……2分
故數(shù)列是以為首項,為公差的等差數(shù)列,
,,. ……4分
(2)證法1:由(1)知,故對
……6分
所以
. ……9分
[證法2:①當n=1時,等式左邊,等式右邊,左邊=右邊,等式成立; ……5分
②假設當時等式成立,
即,
則當時
這就是說當時,等式成立, ……8分
綜①②知對于有:
. ……9分】
(3)當時,
則, ……10分
∵,
∴ ……11分
. ……13分
∵與不能同時成立,∴上式“=”不成立,
即對,. ……14分
【證法二:當時,,
則 ……10分
又
……11分
令則 ……12分
當所以函數(shù)在單調遞減,故當所以命題得證 ……14分】
【證法三:當時,, ……11分
數(shù)列單調遞減,
,
所以命題得證 ……14分】
考點:本小題主要考查數(shù)列的通項公式、前n項和以及與數(shù)列有關的不等式的證明.
點評:本小題比較綜合,既考查了數(shù)列的通項公式的求解,也考查了數(shù)列的前n項的求解,還考查了數(shù)列的性質的應用以及基本不等式、導數(shù)等的綜合應用,難度較大,要求學生具有較高的分析問題、轉化問題、解決問題的能力和運算求解能力.
科目:高中數(shù)學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com