拋物線P:x2=2py上一點(diǎn)Q(m,2)到拋物線P的焦點(diǎn)的距離為3,A,B,C,D為拋物線上的四個不同的點(diǎn),其中A、D關(guān)于y軸對稱,D(x0,y0),B(x1,y1), C(x2,y2),-x0<x1<x0<x2 ,直線BC平行于拋物線P的以D為切點(diǎn)的切線.
(Ⅰ)求p的值;
(Ⅱ)證明:∠CAD=∠BAD;
(Ⅲ)D到直線AB、AC的距離分別為m、n,且m+n=,△ABC的面積為48,求直線BC的方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:黑龍江省大慶實(shí)驗(yàn)中學(xué)2010-2011學(xué)年高二上學(xué)期期末考試數(shù)學(xué)理科試題 題型:013
已知拋物線x2=2py(p>0),過點(diǎn)向拋物線引兩條切線,A、B為切點(diǎn),則線段AB的長度是
2p
p
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2004全國各省市高考模擬試題匯編(天利38套)·數(shù)學(xué) 題型:022
拋物線x2=2p(y+p)的頂點(diǎn)與焦點(diǎn)關(guān)于(0,1)點(diǎn)對稱,則p=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:天驕之路中學(xué)系列 讀想用 高二數(shù)學(xué)(上) 題型:044
如圖所示,O為坐標(biāo)原點(diǎn),直線l在x軸和y軸上的截距分別是a和b,且交拋物線y2=2px(p>0)于M(x1,y1)、N(x2,y2)兩點(diǎn).
(1)寫出直線l的截距式方程;
(2)證明:;
(3)當(dāng)a=2p時,求∠MON的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2008年普通高等學(xué)校招生全國統(tǒng)一考試(山東卷)、數(shù)學(xué)(理科)試卷 題型:044
如圖,設(shè)拋物線方程為x2=2py(p>0),M為直線y=-2p上任意一點(diǎn),過M引拋物線的切線,切點(diǎn)分別為A,B.
(Ⅰ)求證:A,M,B三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(Ⅱ)已知當(dāng)M點(diǎn)的坐標(biāo)為(2,-2p)時,求此時拋物線的方程;
(Ⅲ)是否存在點(diǎn)M,使得點(diǎn)C關(guān)于直線AB的對稱點(diǎn)D在拋物線x2=2py(p>0)上,其中點(diǎn)C滿足(O為坐標(biāo)原點(diǎn)).若存在,求出所有適合題意的點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(Ⅰ)寫出直線l的截距式方程;
(Ⅱ)證明:;
(Ⅲ)當(dāng)a=2p時,求∠MON的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com