設(shè)M是△ABC內(nèi)一點(diǎn),
AB
AC
=2
3
,∠BAC=30°
,定義f(x)=(m,n,p),其中m,n,p分別是△MBC,△MAC,△MAB的面積,若f(Q)=(
1
2
,x,y)
,
1
x
+
4
y
=a , 則
a2+2
a
的取值范圍是
[
163
9
,+∞
[
163
9
,+∞
分析:先確定x+y=1-
1
2
=
1
2
,再利用基本不等式,確定a≥18,進(jìn)而利用函數(shù)的單調(diào)性,即可得出結(jié)論.
解答:解:∵
AB
AC
=2
3
,∠BAC=30°

∴由向量的數(shù)量積公式得|
AB
||
AC
|cos∠BAC=2
3

|
AB
||
AC
|=4

S△ABC=
1
2
|
AB
||
AC
|sin30°=1

∴x+y=1-
1
2
=
1
2

a=
1
x
+
4
y
=2(
1
x
+
4
y
)(x+y)=2(
y
x
+
4x
y
+5)≥2(2
y
x
4x
y
+5)
=18
當(dāng)且僅當(dāng)
y
x
=
4x
y
時(shí).取等號(hào),∴a≥18
a2+2
a
=a+
2
a
在(0,
2
)上單調(diào)遞減,在(
2
,+∞)上單調(diào)遞增
a2+2
a
=a+
2
a
在[18,+∞)上單調(diào)遞增,
a2+2
a
=a+
2
a
163
9

a2+2
a
的取值范圍是[
163
9
,+∞

故答案為:[
163
9
,+∞
).
點(diǎn)評(píng):本題考查基本不等式的應(yīng)用和向量的數(shù)量積,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M是△ABC內(nèi)一點(diǎn),且△ABC的面積為1,定義f(M)=(m,n,p),其中m、n、p分別是△MBC,△MCA,△MAB的面積,若f(M)=(
1
2
,x,y),則
1
x
+
4
y
的最小值是( 。
A、8B、9C、16D、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M是△ABC內(nèi)一點(diǎn),且
AB
AC
=2
3
,∠BAC=30°,定義f(M)=(m,n,p),其中m、n、p分別是△MBC,△MCA,△MAB的面積,若f(P)=(
1
2
,x,y)則
1
x
+
4
y
的最小值( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•上海模擬)設(shè)M是△ABC內(nèi)一點(diǎn),且
AB
AC
=2
3
,∠BAC=30°
,定義f(M)=(m,n,p),其中m、n、p分別是△MBC,△MCA,△MAB的面積,若f(M)=(
1
2
,x,y),則
1
x
+
4
y
的最小值是
18
18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M是△ABC內(nèi)一點(diǎn),且
AB
AC
=4
3
,∠BAC=30°
,定義f(M)=(m,n,p),其中m,n,p分別是△MBC,△MCA,△MAB的面積,若f(M)=(1,x,y),則
1
x
+
4
y
的最小值
(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案