已知橢圓
x2
16
+
y2
4
=1
,求以點(diǎn)P(2,-1)為中點(diǎn)的弦AB所在的直線(xiàn)方程.
分析:先設(shè)出弦所在的直線(xiàn)方程,然后與橢圓方程聯(lián)立;設(shè)兩端點(diǎn)的坐標(biāo),根據(jù)韋達(dá)求出x1+x2,進(jìn)而求得弦所在的直線(xiàn)的斜率,進(jìn)而利用點(diǎn)斜式求得該直線(xiàn)的方程.
解答:解:設(shè)弦AB所在的直線(xiàn)方程為y-(-1)=k(x-2),即y=kx-2k-1.
y=kx-2k-1
x2
16
+
y2
4
=1
,消去y得x2+4(kx-2k-1)2-16=0,
整理得(1+4k2)x2-8k(2k+1)x+4(2k+1)2-16=0(1)設(shè)A(x1,y1),B(x2,y2),所以有x1+x2=
8k(2k+1)
1+4k2

因?yàn)镻(2,-1)為弦AB中點(diǎn),
所以x1+x2=4,即
8k(2k+1)
1+4k2
=4,解得k=
1
2

代入方程(1),驗(yàn)證△>0,合題意.
所以弦AB所在直線(xiàn)的方程為y=
1
2
x-2,即x-2y-4=0
點(diǎn)評(píng):本題主要考查了橢圓的性質(zhì)以及直線(xiàn)與橢圓的關(guān)系.在解決弦長(zhǎng)的中點(diǎn)問(wèn)題,聯(lián)立直線(xiàn)方程和橢圓方程,利用韋達(dá)定理,將弦所在直線(xiàn)的斜率、弦的中點(diǎn)坐標(biāo)聯(lián)系起來(lái),相互轉(zhuǎn)化,達(dá)到解決問(wèn)題的目的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知橢圓
x2
16
+
y2
12
=1,點(diǎn)P為其上一點(diǎn),F(xiàn)1、F2為橢圓的焦點(diǎn),Q為射線(xiàn)F1P延長(zhǎng)線(xiàn)上一點(diǎn),且|PQ|=|PF2|,設(shè)R為F2Q的中點(diǎn).
(1)當(dāng)P點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),求R形成的軌跡方程;
(2)設(shè)點(diǎn)R形成的曲線(xiàn)為C,直線(xiàn)l:y=k(x+4
2
)與曲線(xiàn)C相交于A、B兩點(diǎn),若∠AOB=90°時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①已知橢圓
x2
16
+
y2
8
=1
的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,則這個(gè)橢圓上存在六個(gè)不同的點(diǎn)M,使得△F1MF2為直角三角形;
②已知直線(xiàn)l過(guò)拋物線(xiàn)y=2x2的焦點(diǎn),且與這條拋物線(xiàn)交于A,B兩點(diǎn),則|AB|的最小值為2;
③若過(guò)雙曲線(xiàn)C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個(gè)焦點(diǎn)作它的一條漸近線(xiàn)的垂線(xiàn),垂足為M,O為坐標(biāo)原點(diǎn),則|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,則這兩個(gè)圓恰有2條公切線(xiàn).
其中正確命題的序號(hào)是
 
.(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
16
+
y2
12
=1
的左焦點(diǎn)是F1,右焦點(diǎn)是F2,點(diǎn)P在橢圓上,如果線(xiàn)段PF1的中點(diǎn)在y軸上,那么|PF1|:|PF2|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
16
+
y2
12
=1
的左焦點(diǎn)是F1,右焦點(diǎn)是F2,點(diǎn)P在橢圓上,如果線(xiàn)段PF1的中點(diǎn)在y軸上,那么|PF1|:|PF2|=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
16
+
y2
9
=1
與x軸交于A、B兩點(diǎn),焦點(diǎn)為F1、F2
(1)求以F1、F2為頂點(diǎn),以A、B為焦點(diǎn)的雙曲線(xiàn)E的方程;
(2)M為雙曲線(xiàn)E上一點(diǎn),y軸上一點(diǎn)P (0,
16
3
)
,求|MP|取最小值時(shí)M點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案