【題目】已知非零向量 , , , 滿足 =2 ﹣ , =k + ,給出以下結論:
①若 與 不共線, 與 共線,則k=﹣2;
②若 與 不共線, 與 共線,則k=2;
③存在實數(shù)k,使得 與 不共線, 與 共線;
④不存在實數(shù)k,使得 與 不共線, 與 共線.
其中正確結論的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), ,其中, , 為自然對數(shù)的底數(shù).
(Ⅰ)若和在區(qū)間內具有相同的單調性,求實數(shù)的取值范圍;
(Ⅱ)若,且函數(shù)的最小值為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義:在數(shù)列{an}中,若a ﹣a =p(n≥2,n∈N* , p為常數(shù)),則稱數(shù)列{an}為等方差數(shù)列,下列判斷:
①若{an}是“等方差數(shù)列”,則數(shù)列{an2}是等差數(shù)列;
②{(﹣1)n}是“等方差數(shù)列”;
③若{an}是“等方差數(shù)列”,則數(shù)列{akn}(k∈N* , k為常數(shù))不可能還是“等方差數(shù)列”;
④若{an}既是“等方差數(shù)列”,又是等差數(shù)列,則該數(shù)列是常數(shù)列.
其中正確的結論是 . (寫出所有正確結論的編號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在幾何體中,平面平面,四邊形為菱形,且, , ∥, 為中點.
(Ⅰ)求證: ∥平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)在棱上是否存在點,使 ? 若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國內,某知名連接店分店開張營業(yè)期間,在固定的時間段內消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎的有效展開,參與抽獎活動的人數(shù)越來越多,該分店經理對開業(yè)前7天參加抽獎活動的人數(shù)進行統(tǒng)計, 表示開業(yè)第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:
經過進一步的統(tǒng)計分析,發(fā)現(xiàn)與具有線性相關關系.
(1)如從這7天中隨便機抽取兩天,求至少有1天參加抽獎人數(shù)超過10天的概率;
(2)根據(jù)上表給出的數(shù)據(jù),用最小二乘法,求出與的線性回歸方程,并估計若該活動持續(xù)10天,共有多少名顧客參加抽獎.
參考公式: , , , .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ,若存在實數(shù)x1 , x2 , x3 , x4 滿足f(x1)=f(x2)=f(x3)=f(x4),且x1<x2<x3<x4 , 則 的取值范圍是( )
A.(20,32)
B.(9,21)
C.(8,24)
D.(15,25)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋子中放有大小和形狀相同的小球若干,其中標號為0的小球1個,標號為1的小球1個,標號為2的小球2個.從袋子中不放回地隨機抽取小球兩個,每次抽取一個球,記第一次取出的小球標號為,第二次取出的小球標號為.
(1)記事件表示“”,求事件的概率;
(2)在區(qū)間內任取兩個實數(shù),,求“事件恒成立”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某造船公司年造船量是20艘,已知造船x艘的產值函數(shù)為R(x)=3 700x+45x2-10x3(單位:萬元),成本函數(shù)為C(x)=460x-5 000(單位:萬元).
(1)求利潤函數(shù)P(x);(提示:利潤=產值-成本)
(2)問年造船量安排多少艘時,可使公司造船的年利潤最大?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com