已知x∈[0,
π
4
],求函數(shù)y=cosx+sin2x+
1
2
的最值.
考點:三角函數(shù)的最值
專題:三角函數(shù)的圖像與性質(zhì)
分析:利用三角函數(shù)的基本關(guān)系式化簡函數(shù)的表達(dá)式為cosx的二次函數(shù),利用換元法求出函數(shù)的值域.
解答: 解:由題意y=cosx+sin2x+
1
2
=-cos2x+cosx+
3
2
=-(cosx-
1
2
2+
7
4
,x∈[0,
π
4
],…2′
令t=cosx,t∈[
2
2
,1]…4′
則y=-(t-
1
2
2+
7
4
.         …6′
∴當(dāng)t=
π
2
時,ymax=1+
2
2
;               …8′
當(dāng)t=1時,ymin=
3
2
.                 …10′
點評:本題考查三角函數(shù)的化簡求值,二次函數(shù)閉區(qū)間上的最值的求法,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x
x+3
,數(shù)列{xn}的通項由xn=f(xn-1)(n≥2,n∈N*)確定.
 (1)求證:{
1
xn
}是等差數(shù)列;
 (2)當(dāng)x1=
1
2
時,求x2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x|x2+6x-16>0},N={x|(x+10)(x-K-2)≤0},若M∩N=N,則K的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex(x+1).
(Ⅰ)求曲線y=f(x)在點(0,f(0))處的切線方程;
(Ⅱ)若對于任意的x∈(-∞,0),都有f(x)>k,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,四邊形ABCD的位置如圖所示,A(0,4),B(-2,0),C(0,-1),D(3,0),動點P(x,y)在第一象限,且滿足S△PAD=S△PBC,求點P的橫、縱坐標(biāo)滿足的關(guān)系式(用x表示y),并寫出x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2ax+1在x∈[-1,1]時有零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1的一條漸近線的傾斜角為n,經(jīng)過此雙曲線的一個焦點且與其實軸垂直的直線與該雙曲線相交于P,Q兩點,則|PQ|的長度是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a、b都是正實數(shù),且a≠b,a+b=2,求證:ab<1<
a2+b2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<α<
π
2
<β<π,sinα=
3
5
,cos(α+β)=-
4
5
,則sinβ=
 

查看答案和解析>>

同步練習(xí)冊答案