如圖,四棱錐的底面是直角梯形,,,且,頂點(diǎn)在底面內(nèi)的射影恰好落在的中點(diǎn)上.
(1)求證:;
(2)若,求直線與所成角的 余弦值;
(3)若平面與平面所成的二面角為,求的值.
(1)詳見解析;(2);(3).
解析試題分析:(1)以O(shè)為坐標(biāo)原點(diǎn),AB所在直線為x軸,OP所在直線為z軸,建立空間直角坐標(biāo)系o-xyz,求出向量,的坐標(biāo),代入數(shù)量積公式,驗(yàn)證其數(shù)量積與0的關(guān)系,即可得到結(jié)論.
(2)由PO=BC,得h=a,求出向量,的坐標(biāo),代入向量夾角公式,即可求出直線PD與AB所成的角;
(3)求出平面APB與平面PCD的法向量,根據(jù)平面APB與平面PCD所成的角為60°,構(gòu)造關(guān)于h的方程,解方程即可得到的值.
試題解析:因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/c9/2/0uzyt.png" style="vertical-align:middle;" />中點(diǎn)為點(diǎn)在平面內(nèi)的射影,所以平面.過作的平行線交與點(diǎn),則.
建立如圖所示的空間直角坐標(biāo)系 2分
(1)設(shè),,則
,.
∴.
∵, ∴ . 6分
(2)由,得,于是
∵, 8分
∴,
∴直線PD與AB所成的角的余弦值為. 10分
(3)設(shè)平面PAB的法向量為,可得,
設(shè)平面PCD的法向量為,
由題意得,
∵∴令,得到, 12分
∴, 14分
∵平面與平面所成的二面角為,∴,解得,
即. 16分
考點(diǎn):(1)直線與平面所成的角;(2)異面直線及其所成的角.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形ABEF和四邊形ABCD均是直角梯形,∠FAB=∠DAB=90°,AF=AB=BC=2,AD=1,F(xiàn)A⊥CD.
(1)證明:在平面BCE上,一定存在過點(diǎn)C的直線l與直線DF平行;
(2)求二面角FCDA的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn),AA1=AC=CB=AB.
(1)證明:BC1∥平面A1CD;
(2)求二面角D-A1C-E的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐P-ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC與BD交于O,PO⊥底面ABCD,PO=2,AB=2CD=2,E,F分別是AB,AP的中點(diǎn).
(1)求證:AC⊥EF;
(2)求二面角F-OE-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐S﹣ABCD的底面為正方形,SD⊥平面ABCD,SD=AD=2,請建立空間直角坐標(biāo)系解決下列問題.
(1)求證:;(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在如圖所示的空間直角坐標(biāo)系O-xyz中,原點(diǎn)O是BC的中點(diǎn),A點(diǎn)坐標(biāo)為,D點(diǎn)在平面yoz上,BC=2,∠BDC=90°,∠DCB=30°.
(Ⅰ)求D點(diǎn)坐標(biāo);
(Ⅱ)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
三棱柱ABC-A1B1C1在如圖所示的空間直角坐標(biāo)系中,已知AB=2,AC=4,A1A=3.D是BC的中點(diǎn).
(1)求直線DB1與平面A1C1D所成角的正弦值;
(2)求二面角B1-A1D-C1的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com