精英家教網 > 高中數學 > 題目詳情
袋中有1個白球,2個黃球,先從中摸出一球,再從剩下
的球中摸出一球,兩次都是黃球的概率為       

試題分析:第一次摸出黃球的概率等于,第二次也摸出黃球的概率等于
故兩次都是黃球的概率為 ×=,故答案為
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

一個袋中裝有8個大小質地相同的球,其中4個紅球、4個白球,現從中任意取出四個球,設為取得紅球的個數.
(1)求的分布列;
(2)若摸出4個都是紅球記5分,摸出3個紅球記4分,否則記2分.求得分的期望.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某花店每天以每枝5元的價格從農場購進若干枝玫瑰花,然后以每枝10元的價格出售.如果當天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進17枝玫瑰花,求當天的利潤y(單位:元)關于當天需求量n(單位:枝,n∈N)的函數解析式;
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n
14
15
16
17
18
19
20
頻數
10
20
16
16
15
13
10
 
①假設花店在這100天內每天購進17枝玫瑰花,求這100天的日利潤(單位:元)的平均數;
②若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天的利潤不少于75元的概率.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某班主任對全班60名學生的學習積極性和對待班級工作的態(tài)度進行了調查,統計數據
如下表所示:
積極參加班級工作不太積極參加班級工作合計
學習積極性高251035
學習積極性一般52025
總計303060
P(Χ2≥k00.050.0250.01
k03.845.026.64
試用獨立性檢驗的思想方法分析:學生的學習積極性與對待班級工作的態(tài)度是否有關系,并說明理由.(參考公式:,Χ2=
n(ad-bc)2
(a+c)(b+d)(a+b)(c+d)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

莖葉圖表示的是甲、乙兩人在5次綜合測評中的成績,其中有一個數字被污損,則甲的平均成績超過乙的平均成績的概率是______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某人在如圖所示的直角邊長為4米的三角形地塊的每個格點(指縱、橫直線的交叉點以及三角形的頂點)處都種了一株相同品種的作物.根據歷年的種植經驗,一株該種作物的年收獲量Y(單位:kg)與它的“相近”作物株數X之間的關系如下表所示:

X
1
2
3
4
Y
51
48
45
42
 
這里,兩株作物“相近”是指它們之間的直線距離不超過1米.
(1)從三角形地塊的內部和邊界上分別隨機選取一株作物,求它們恰好“相近”的概率;
(2)從所種作物中隨機選取一株,求它的年收獲量的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某工廠生產A,B兩種元件,其質量按測試指標劃分,指標大于或等于82為正品,小于82為次品.現隨機抽取這兩種元件各100個進行檢測,檢測結果統計如下:
測試
指標
[70,76)
[76,82)
[82,88)
[88,94)
[94,100]
元件A
8
12
40
32
8
元件B
7
18
40
29
6
(1)試分別估計元件A,元件B為正品的概率;
(2)生產1個元件A,若是正品則盈利40元,若是次品則虧損5元;生產1個元件B,若是正品則盈利50元,若是次品則虧損10元.在(1)的前提下,
(ⅰ)X為生產1個元件A和1個元件B所得的總利潤,求隨機變量X的分布列和數學期望;
(ⅱ)求生產5個元件B所得利潤不少于140元的概率.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

一個籃球運動員投籃一次得3分的概率為a,得2分的概率為b,不得分的概率為c(a,b,c∈(0,1)),已知他投籃一次得分的均值為2,則的最小值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

[2013·山東濱州]若以連續(xù)擲兩次骰子分別得到的點數m、n作為點P的橫、縱坐標,則點P(m,n)落在直線x+y=4下方的概率為(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案