【題目】已知f(x)=ex﹣ax﹣1.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍.

【答案】
(1)解:f′(x)=ex﹣a,令f′(x)≥0,解得ex≥a.

當(dāng)a≤0時(shí),有f′(x)>0在R上恒成立,此時(shí)函數(shù)f(x)在R上單調(diào)遞增;

當(dāng)a>0時(shí),x≥lna,此時(shí)函數(shù)f(x)在[lna,+∞)上單調(diào)遞增


(2)解:f(x)在定義域R內(nèi)單調(diào)遞增,

∴f′(x)=ex﹣a≥0恒成立,即a≤ex,x∈R恒成立.

∵x∈R,∴ex∈(0,+∞),∴a≤0.

當(dāng)a=0時(shí),f′(x)=ex>0在R上恒成立.

故當(dāng)a≤0時(shí),f(x)在定義域R內(nèi)單調(diào)遞增


【解析】(1)f′(x)=ex﹣a,令f′(x)≥0,解得ex≥a.對(duì)a分類討論,即可得出.(2)f(x)在定義域R內(nèi)單調(diào)遞增,可得f′(x)=ex﹣a≥0恒成立,即a≤ex , x∈R恒成立.即可得出.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減,以及對(duì)函數(shù)的最大(小)值與導(dǎo)數(shù)的理解,了解求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的袋子裝有4個(gè)完全相同的小球,球上分別標(biāo)有數(shù)字為0,1,2,2,現(xiàn)甲從中摸出一個(gè)球后便放回,乙再?gòu)闹忻鲆粋(gè)球,若摸出的球上數(shù)字大即獲勝(若數(shù)字相同則為平局),則在甲獲勝的條件下,乙摸1號(hào)球的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,用一個(gè)平行于圓錐SO底面的平面截這個(gè)圓錐,截得圓臺(tái)上、下底面的半徑分別2 cm和5 cm,圓臺(tái)的母線長(zhǎng)是12 cm,求圓錐SO的母線長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題中錯(cuò)誤的是(
A.在一次試卷分析中,從每個(gè)考室中抽取第5號(hào)考生的成績(jī)進(jìn)行統(tǒng)計(jì),不是簡(jiǎn)單隨機(jī)抽樣
B.對(duì)一個(gè)樣本容量為100的數(shù)據(jù)分組,各組的頻數(shù)如下:

區(qū)間

[17,19)

[19,21)

[21,23)

[23,25)

[25,27)

[27,29)

[29,31)

[31,33]

頻數(shù)

1

1

3

3

18

16

28

30

估計(jì)小于29的數(shù)據(jù)大約占總體的58%
C.設(shè)產(chǎn)品產(chǎn)量與產(chǎn)品質(zhì)量之間的線性相關(guān)系數(shù)為﹣0.91,這說明二者存在著高度相關(guān)
D.通過隨機(jī)詢問110名性別不同的行人,對(duì)過馬路是愿意走斑馬線還是愿意走人行天橋進(jìn)行抽樣調(diào)查,得到如表列聯(lián)表:

總計(jì)

走天橋

40

20

60

走斑馬線

20

30

50

總計(jì)

60

50

110

,則有99%以上的把握認(rèn)為“選擇過馬路方式與性別有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)當(dāng)a=2,求函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)a>2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)=a﹣x2 ≤x≤e,e為自然對(duì)數(shù)的底數(shù))與h(x)=2lnx的圖象上存在關(guān)于x軸對(duì)稱的點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.[1, +2]
B.[1,e2﹣2]
C.[ +2,e2﹣2]
D.[e2﹣2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi , yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為: =0.85x﹣85.71,則下列結(jié)論中不正確的是( )
A.3與3x2+2ax+b=0具有正的線性相關(guān)關(guān)系
B.回歸直線過樣本點(diǎn)的中心(
C.若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg
D.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖,則(
A.函數(shù)f(x)有1個(gè)極大值點(diǎn),1個(gè)極小值點(diǎn)
B.函數(shù)f(x)有2個(gè)極大值點(diǎn),2個(gè)極小值點(diǎn)
C.函數(shù)f(x)有3個(gè)極大值點(diǎn),1個(gè)極小值點(diǎn)
D.函數(shù)f(x)有1個(gè)極大值點(diǎn),3個(gè)極小值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)椋ī?,1),且同時(shí)滿足下列條件:
①f(x)是奇函數(shù);
②f(x)在定義域上單調(diào)遞減;
③f(1﹣a)+f(1﹣a2)<0.
求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案