已知離心率為的橢圓的右焦點(diǎn)F是圓(x-1)2+y2=1的圓心,過(guò)橢圓上的動(dòng)點(diǎn)P作圓的兩條切線分別交y軸于M、N兩點(diǎn).
(1)求橢圓的方程;
(2)求線段MN長(zhǎng)的最大值,并求此時(shí)點(diǎn)P的坐標(biāo).

【答案】分析:(I)根據(jù)圓方程可求得圓心坐標(biāo),即橢圓的右焦點(diǎn),根據(jù)橢圓的離心率進(jìn)而求得a,最后根據(jù)a,b和c的關(guān)系求得b,則橢圓方程可得.
(II)P(x,y),M(0,m),N(0,n),把橢圓方程與圓方程聯(lián)立求得交點(diǎn)的橫坐標(biāo),進(jìn)而可推斷x的范圍,把直線PM的方程化簡(jiǎn),根據(jù)點(diǎn)到直線的距離公式表示出圓心到直線PM和PN的距離.求得x和y的關(guān)系式,進(jìn)而求得m+n和mn的表達(dá)式,進(jìn)而求得|MN|.把點(diǎn)P代入橢圓方程根據(jù)弦長(zhǎng)公式求得MN|.記,根據(jù)函數(shù)的導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性,進(jìn)而確定函數(shù)f(x)的值域,進(jìn)而求得當(dāng)時(shí),|MN|取得最大值,進(jìn)而求得y,則P點(diǎn)坐標(biāo)可得.
解答:解:(I)∵圓(x-1)2+y2=1的圓心是(1,0),
∴橢圓的右焦點(diǎn)F(1,0),
∵橢圓的離心率是,∴
∴a2=2,b2=1,∴橢圓的方程是

(II)設(shè)P(x,y),M(0,m),N(0,n),
,∴
直線PM的方程:,
化簡(jiǎn)得(y-m)x-xy+xm=0.
又圓心(1,0)到直線PM的距離為1,

∴(y-m)2+x2=(y-m)2+2xm(y-m)+x2m2,
化簡(jiǎn)得(x-2)m2+2ym-x=0,
同理有(x-2)n2+2yn-x=0.
,
=
∵P(x,y)是橢圓上的點(diǎn),∴
,
,則,時(shí),
f'(x)<0;時(shí),f'(x)<0,
∴f(x)在上單調(diào)遞減,在內(nèi)也是單調(diào)遞減,

當(dāng)時(shí),|MN|取得最大值,
此時(shí)點(diǎn)P位置是橢圓的左頂點(diǎn)
點(diǎn)評(píng):本題主要考查了直線與圓錐曲線的綜合問(wèn)題.考查考生分析問(wèn)題、解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

 . 已知離心率為的橢圓的右焦點(diǎn)是圓的圓心,過(guò)橢圓上的動(dòng)點(diǎn)P作圓的兩條切線分別交軸于M、N兩點(diǎn).

(I)求橢圓的方程;

(II)求線段MN長(zhǎng)的最大值,并求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣西桂林十八中高三第二次月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分12分)已知離心率為的橢圓上的點(diǎn)到

 

左焦點(diǎn)的最長(zhǎng)距離為

(1)求橢圓的方程;

(2)如圖,過(guò)橢圓的左焦點(diǎn)任作一條與兩坐標(biāo)軸都不垂直的弦,若點(diǎn)軸上,且使得的一條內(nèi)角平分線,則稱點(diǎn)為該橢圓的“左特征點(diǎn)”,求橢圓的“左特征點(diǎn)”的坐標(biāo).

 

                                                      

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年廣東省華南師大附中高三周六自測(cè)數(shù)學(xué)試卷1(文科)(解析版) 題型:解答題

已知離心率為的橢圓C的中心在坐標(biāo)原點(diǎn)O,一焦點(diǎn)坐標(biāo)為(1,0),圓O的方程為x2+y2=7.
(1)求橢圓C的方程,并證明橢圓C在圓O內(nèi);
(2)過(guò)橢圓C上的動(dòng)點(diǎn)P作互相垂直的兩條直線l1,l2,l1與圓O相交于點(diǎn)A,C,l2與圓O相交于點(diǎn)B,D(如圖),求四邊形ABCD的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:廣西桂林十八中2011-2012學(xué)年高三第二次月考試題數(shù)學(xué)理 題型:解答題

 

     已知離心率為的橢圓上的點(diǎn)到左焦點(diǎn)的最長(zhǎng)距離為

(1)求橢圓的方程;

(2)如圖,過(guò)橢圓的左焦點(diǎn)任作一條與兩坐標(biāo)軸都不垂直的弦,若點(diǎn)軸上,且使得的一條內(nèi)角平分線,則稱點(diǎn)為該橢圓的“左特征點(diǎn)”,求橢圓的“左特征點(diǎn)”的坐標(biāo).

                                                       

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案