已知平面直角坐標(biāo)系xoy上的區(qū)域D由不等式組給定,若為D上的動(dòng)點(diǎn),A的坐標(biāo)為(-1,1),則的取值范圍是_____________.

 

【答案】

【解析】

試題分析:根據(jù)題意,由于不等式組可知不等式表示的 平面區(qū)域,那么可知為D上的動(dòng)點(diǎn),A的坐標(biāo)為(-1,1)則,則利用平移法可知當(dāng)過(guò)點(diǎn)(1,1)取得最小值,過(guò)點(diǎn)(0,2)時(shí),則可知取得最大值為2,因此可知的范圍是。

考點(diǎn):線性規(guī)劃

點(diǎn)評(píng):本題考查線性規(guī)劃、向量的坐標(biāo)表示、平面向量數(shù)量積的運(yùn)算等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,屬于基礎(chǔ)題

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面直角坐標(biāo)系xOy上的區(qū)域D由不等式組
0≤x≤
2
y≤2
x≤
2
y
給定,若M(x,y)為D上的動(dòng)點(diǎn),點(diǎn)A的坐標(biāo)為(
2
,1)
,
(1)求區(qū)域D的面積
(2)設(shè)z=
2
x+y
,求z的取值范圍;
(3)若M(x,y)為D上的動(dòng)點(diǎn),試求(x-1)2+y2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面直角坐標(biāo)系中,A(cosx,sinx),B(1,1),
OA
+
OB
=
OC
,f(x)=|
OC
|2
(Ⅰ)求f(x)的最小正周期和對(duì)稱中心;
(Ⅱ)求f(x)在區(qū)間[0,2π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面直角坐標(biāo)系中,角α的始邊與x正半軸重合,終邊與單位圓(圓心是原點(diǎn),半徑為1的圓)交于點(diǎn)P.若角α在第
一象限,且tanα=
4
3
.將角α終邊逆時(shí)針旋轉(zhuǎn)
π
3
大小的角后與單位圓交于點(diǎn)Q,則點(diǎn)Q的坐標(biāo)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•宜賓二模)已知平面直角坐標(biāo)系xoy上的區(qū)域D由不等式組
x+y≥2
x≤1
y≤2
給定,若M(x,y)為D上的動(dòng)點(diǎn),A的坐標(biāo)為(-1,1),則
OA
OM
的取值范圍是
[0,2]
[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面直角坐標(biāo)系xOy上的定點(diǎn)M(2,0)和定直線l:x=-
3
2
,動(dòng)點(diǎn)P在直線l上的射影為Q,且4(
PQ
+
PM
)•(
PQ
-
PM
)+2
PM
OM
=1

(1)求點(diǎn)P的軌跡C的方程;
(2)設(shè)A、B是軌跡C上兩個(gè)動(dòng)點(diǎn),
MA
MB
,λ∈R,∠AOB=θ,請(qǐng)把△AOB的面積S表示為θ的函數(shù),并求此函數(shù)的定義域.

查看答案和解析>>

同步練習(xí)冊(cè)答案