【題目】函數(shù) .
(1)當(dāng)時(shí),討論的單調(diào)性;
(2)若函數(shù)有兩個(gè)極值點(diǎn),且,證明: .
【答案】(1)答案見(jiàn)解析;(2)證明見(jiàn)解析.
【解析】試題分析:
(1)結(jié)合函數(shù)的解析式求導(dǎo)可得,分類(lèi)討論可得:
當(dāng)時(shí), 在上遞減,
在和上遞增,當(dāng)時(shí),在上遞增.
(2)由題意結(jié)合函數(shù)的性質(zhì)可知: 是方程的兩根,結(jié)合所給的不等式構(gòu)造對(duì)稱(chēng)差函數(shù) ,結(jié)合函數(shù)的性質(zhì)和自變量的范圍即可證得題中的不等式.
試題解析:
函數(shù)的定義域?yàn)?/span>,
(1)令,開(kāi)口向上, 為對(duì)稱(chēng)軸的拋物線(xiàn),
當(dāng)時(shí),
①,即時(shí), ,即在上恒成立,
②當(dāng)時(shí),由,得,
因?yàn)?/span>,所以,當(dāng)時(shí), ,即,
當(dāng)或時(shí), ,即,
綜上,當(dāng)時(shí), 在上遞減,
在和上遞增,當(dāng)時(shí),在上遞增.
(2)若函數(shù)有兩個(gè)極值點(diǎn)且,
則必有,且,且在上遞減,在和上遞增,
則,
因?yàn)?/span>是方程的兩根,
所以,即,
要證
又
,
即證對(duì)恒成立,
設(shè)
則
當(dāng)時(shí), ,故,
所以在上遞增,
故,
所以,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為實(shí)常數(shù)).
(Ⅰ)若為的極值點(diǎn),求實(shí)數(shù)的取值范圍.
(Ⅱ)討論函數(shù)在上的單調(diào)性.
(Ⅲ)若存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中
(Ⅰ)若函數(shù)存在相同的零點(diǎn),求的值;
(Ⅱ)若存在兩個(gè)正整數(shù),當(dāng)時(shí),有與同時(shí)成立,求的最大值及取最大值時(shí)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知有窮數(shù)列, , , , ,若數(shù)列中各項(xiàng)都是集合的元素,則稱(chēng)該數(shù)列為數(shù)列.
對(duì)于數(shù)列,定義如下操作過(guò)程從中任取兩項(xiàng), ,將的值添在的最后,然后刪除, ,這樣得到一個(gè)項(xiàng)的新數(shù)列,記作(約定:一個(gè)數(shù)也視作數(shù)列).若還是數(shù)列,可繼續(xù)實(shí)施操作過(guò)程.得到的新數(shù)列記作, ,如此經(jīng)過(guò)次操作后得到的新數(shù)列記作.
(Ⅰ)設(shè), , , ,請(qǐng)寫(xiě)出的所有可能的結(jié)果.
(Ⅱ)求證:對(duì)數(shù)列實(shí)施操作過(guò)程后得到的數(shù)列仍是數(shù)列.
(Ⅲ)設(shè), , , , , , , , , , ,求的所有可能的結(jié)果,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中, , ,點(diǎn)M是線(xiàn)段AB上的一點(diǎn),且.
(1)證明:平面平面ABCD;
(2)求直線(xiàn)CM與平面PCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿(mǎn)足, ,其中.
(1)設(shè),求證:數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得對(duì)于恒成立,若存在,求出的最小值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù),),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)寫(xiě)出曲線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;
(2)已知點(diǎn)是曲線(xiàn)上一點(diǎn),若點(diǎn)到曲線(xiàn)的最小距離為,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com