已知函數(shù)
(1)求的最小正周期;
(2)若,求在區(qū)間上的值域.

(1) ;(2) .

解析試題分析:(1)先由誘導公式及兩角的正弦公式將原式展開,再用二倍角公式及半角公式降冪,再用和角公式化為一個角的三角函數(shù),用周期公式求出周期;(2)由不等式性質(zhì)及所給所在的區(qū)間求出的范圍,結(jié)合正弦(余弦)函數(shù)圖像求出sin()的范圍,再用不等式性質(zhì)求出的值域.
試題解析:                              2分

                                4分
                                     6分
(1)所以.                                               8分
(2),
因為,所以,
所以,
,
所以在區(qū)間上的值域為.                         12分
考點:1.兩角和與差的三角公式;2.倍角公式;3.周期公式;4.三角函數(shù)圖像與性質(zhì).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù))的最小正周期為
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)將函數(shù)的圖象向左平移個單位,再向上平移1個單位,得到函數(shù)的圖象;若上至少含有10個零點,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知α=,回答下列問題.
(1)寫出所有與α終邊相同的角;
(2)寫出在(-4π,2π)內(nèi)與α終邊相同的角;
(3)若角β與α終邊相同,則是第幾象限的角?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=4cos x·sina的最大值為2.
(1)求a的值及f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分圖象如圖所示.

(1)求f(x)的最小正周期及解析式.
(2)設(shè)g(x)=f(x)-cos2x,求函數(shù)g(x)在區(qū)間[0,]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=(A>0,>0,)的圖象的一部分如下圖所示.

(1)求函數(shù)f(x)的解析式.
(2)當x(-6,2)時,求函數(shù)g(x)= f(x+2)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系xOy中,以O(shè)x軸為始邊作兩個銳角α、β,它們的終邊分別與單位圓相交于A、B兩點.已知A、B的橫坐標分別為.求:
 
(1) tan(α+β)的值;
(2) α+2β的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

α是第二象限角,P(x,)為其終邊上一點,且cosα=x,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知3cos2(π+x)+5cos=1,求6sinx+4tan2x-3cos2(π-x)的值.

查看答案和解析>>

同步練習冊答案