【題目】某企業(yè)積極響應(yīng)國(guó)家“科技創(chuàng)新”的號(hào)召,大力研發(fā)人工智能產(chǎn)品,為了對(duì)一批新研發(fā)的產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如下表所示:
試銷單價(jià)(百元) | 1 | 2 | 3 | 4 | 5 | 6 |
產(chǎn)品銷量(件) | 91 | 86 | 78 | 73 | 70 |
附:參考公式:,,
參考數(shù)據(jù):,,.
(1)求的值;
(2)已知變量,具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(件)關(guān)于試銷單價(jià)(百元)的線性回歸方程(計(jì)算結(jié)果精確到整數(shù)位);
(3)用表示用正確的線性回歸方程得到的與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)的殘差的絕對(duì)值時(shí),則將銷售數(shù)據(jù)稱為一個(gè)“有效數(shù)據(jù)”.現(xiàn)從這6組銷售數(shù)據(jù)中任取2組,求抽取的2組銷售數(shù)據(jù)都是“有效數(shù)據(jù)”的概率.
【答案】(1)(2)見解析(3)見解析
【解析】
(1)根據(jù)平均數(shù)的定義,結(jié)合題中所給的數(shù)據(jù)進(jìn)行求解即可;
(2)利用平均數(shù)的定義,可以求出的值,再利用已知所給的數(shù)據(jù)進(jìn)行求解即可;
(3)根據(jù)已知,結(jié)合(2)所求的線性回歸方程可以求出滿足已知的有效數(shù)據(jù),最后利用列舉法,根據(jù)古典概型計(jì)算公式進(jìn)行求解即可.
(1)由,得,
解得.
(2)∵,
而,,,
∴,
所求的線性回歸方程為:;
或者,所求的線性回歸方程為:
(3)若回歸方程為:時(shí),
當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.滿足條件的“有效數(shù)據(jù)”有:,,,共4個(gè),
記,,,,,,從6組銷售數(shù)據(jù)中任取2組,基本事件有:,,,,,,,,,,,,,,,共15種,
抽取的2組銷售數(shù)據(jù)都是“有效數(shù)據(jù)”的事件有:,,,,,,共6種,
所以抽取的2組銷售數(shù)據(jù)都是“有效數(shù)據(jù)”的概率為.
若回歸方程為:時(shí),
當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.滿足條件的“有效數(shù)據(jù)”有:,共1個(gè),
記,,,,,,從6
抽取的2組銷售數(shù)據(jù)都是“有效數(shù)據(jù)”的事件不存在
所以抽取的2組銷售數(shù)據(jù)都是“有效數(shù)據(jù)”的概率為0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的奇函數(shù)滿足,且時(shí)有,甲、乙、丙、丁四位同學(xué)有下列結(jié)論:
甲:;
乙:函數(shù)在上是增函數(shù);
丙:函數(shù)關(guān)于直線對(duì)稱;
丁:若,則關(guān)于的方程在上所有根之和為.
其中正確的是( )
A.乙、丁B.乙、丙C.甲、乙、丙D.乙、丙、丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚時(shí),某種魚在一定的條件下,每尾魚的平均生長(zhǎng)速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)不超過4(尾/立方米)時(shí),的值為(千克/年);當(dāng)時(shí),是的一次函數(shù);當(dāng)達(dá)到(尾/立方米)時(shí),因缺氧等原因,的值為(千克/年).
(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(2)當(dāng)養(yǎng)殖密度為多大時(shí),魚的年生長(zhǎng)量(單位:千克/立方米)可以達(dá)到最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)古代數(shù)學(xué)著作《算法統(tǒng)綜》中有這樣的一個(gè)問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請(qǐng)公仔細(xì)算相還”.其大意為:“有一個(gè)人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達(dá)目的地”,請(qǐng)問此人第2天走的路程為
A. 24里 B. 48里 C. 72里 D. 96里
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)若是奇函數(shù),求的值,并判斷的單調(diào)性(不用證明);
(2)若函數(shù)在區(qū)間(0,1)上有兩個(gè)不同的零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天水市第一次聯(lián)考后,某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,
規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績(jī)后,
得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
合計(jì) | 110 |
(1)請(qǐng)完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號(hào),先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號(hào)。試求抽到9號(hào)或10號(hào)的概率。
參考公式與臨界值表:。
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓錐如圖①所示,圖②是它的正(主)視圖.已知圓的直徑為, 是圓周上異于的一點(diǎn), 為的中點(diǎn).
(I)求該圓錐的側(cè)面積S;
(II)求證:平面⊥平面;
(III)若∠CAB=60°,在三棱錐中,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)銷商小王對(duì)其所經(jīng)營(yíng)的某一型號(hào)二手汽車的使用年數(shù)與銷售價(jià)格(單位:萬元/輛)進(jìn)行整理,得到如下的對(duì)應(yīng)數(shù)據(jù):
使用年數(shù) | 2 | 4 | 6 | 8 | 10 |
售價(jià) | 16 | 13 | 9.5 | 7 | 4.5 |
(1)試求關(guān)于的回歸直線方程;
(2)已知每輛該型號(hào)汽車的收購(gòu)價(jià)格為萬元,根據(jù)(1)中所求的回歸方程,預(yù)測(cè)為何值時(shí),小王銷售一輛該型號(hào)汽車所獲得的利潤(rùn)最大.
附:回歸方程中,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的極小值;
(2)設(shè)函數(shù),試問:在定義域內(nèi)是否存在三個(gè)不同的自變量使得的值相等,若存在,請(qǐng)求出的范圍,若不存在,請(qǐng)說明理由?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com