【題目】已知集合A=[﹣1,3],B=[m,m+6],m∈R.
(1)當(dāng)m=2時(shí),求A∩RB;
(2)若A∪B=B,求實(shí)數(shù)m的取值范圍.
【答案】
(1)解:當(dāng)m=2時(shí),B=[m,m+6]=[2,8],
RB=(﹣∞,2)∪(8,+∞);
又A=[﹣1,3],
所以A∩RB=[﹣1,2);
(2)解:因?yàn)锳∪B=B,所以AB,
由A=[﹣1,3],B=[m,m+6],
得 ,
解得﹣3≤m≤﹣1,
即m的取值范圍是[﹣3,﹣1].
【解析】(1)寫出m=2時(shí)集合B和RB,再計(jì)算A∩RB;(2)根據(jù)A∪B=B時(shí)AB,得出關(guān)于m的不等式組,求出解集即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解交、并、補(bǔ)集的混合運(yùn)算的相關(guān)知識(shí),掌握求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為角A,B,C所對(duì)的邊,角C是鈍角,且sinB= .
(1)求角C的值;
(2)若b=2,△ABC的面積為 ,求c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得利潤(rùn)分別為P和Q(萬元),它們與投入資金m(萬元)的關(guān)系有經(jīng)驗(yàn)公式P= m+65,Q=76+4 ,今將150萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對(duì)甲、乙兩種產(chǎn)品的投資金額不低于25萬元.
(1)設(shè)對(duì)乙產(chǎn)品投入資金x萬元,求總利潤(rùn)y(萬元)關(guān)于x的函數(shù)關(guān)系式及其定義域;
(2)如何分配使用資金,才能使所得總利潤(rùn)最大?最大利潤(rùn)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(cosα,sinα), =(﹣2,2).
(1)若 = ,求(sinα+cosα)2的值;
(2)若 ,求sin(π﹣α)sin( )的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+4x+a﹣5,g(x)=m4x﹣1﹣2m+7.
(1)若函數(shù)f(x)在區(qū)間[﹣1,1]上存在零點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=0時(shí),若對(duì)任意的x1∈[1,2],總存在x2∈[1,2],使f(x1)=g(x2)成立,求實(shí)數(shù)m的取值范圍;
(3)若y=f(x)(x∈[t,2])的置于為區(qū)間D,是否存在常數(shù)t,使區(qū)間D的長(zhǎng)度為6﹣4t?若存在,求出t的值;若不存在,請(qǐng)說明理由. (注:區(qū)間[p,q]的長(zhǎng)度q﹣p)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx﹣ )(其中A,ω為常數(shù),且A>0,ω>0)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)若f(α+ )= ,f(β+ )= ,且α,β∈(0, ),求α+β的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x),x∈R,對(duì)于任意的x,y∈R,f(x+y)=f(x)+f(y),若f(1)= ,則f(﹣2016)= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com