15.一汽車4S店新進(jìn)A,B,C三類轎車,每類轎車的數(shù)量如下表:
類別ABC
數(shù)量432
同一類轎車完全相同,現(xiàn)準(zhǔn)備提取一部分車去參加車展.
(Ⅰ)從店中一次隨機(jī)提取2輛車,求提取的兩輛車為同一類型車的概率;
(Ⅱ)若一次性提取4輛車,其中A,B,C三種型號(hào)的車輛數(shù)分別記為a,b,c,記ξ為a,b,c的最大值,求ξ的分布列和數(shù)學(xué)期望.

分析 (Ⅰ)設(shè)提取的兩輛車為同一類型的概率為P,直接利用古典概型求解即可.
(Ⅱ)隨機(jī)變量ξ的取值為2,3,4,求出概率得到分布列,然后求解期望即可.

解答 (本小題滿分12分)
解:(Ⅰ)設(shè)提取的兩輛車為同一類型的概率為P,$P=\frac{c_4^2+c_3^2+c_2^2}{c_9^2}=\frac{6+3+1}{36}=\frac{5}{18}$----------------------(4分)
(Ⅱ)隨機(jī)變量ξ的取值為2,3,4.----------------------(6分)
∴$p(ξ=4)=\frac{c_4^4}{c_9^4}=\frac{1}{126}$,
∴$P(ξ=3)=\frac{C_4^3C_5^1+C_3^3C_6^1}{C_9^2}=\frac{20+6}{126}=\frac{13}{63}$,
∴$P(ξ=2)=1-P(ξ=4)-P(ξ=3)=1-\frac{1}{126}-\frac{26}{126}=\frac{99}{126}=\frac{11}{14}$,
∴其分布列為:

ξ234
p$\frac{11}{14}$$\frac{13}{63}$$\frac{1}{126}$
----------------------(10分)
數(shù)學(xué)期望為$Eξ=2×\frac{11}{14}+3×\frac{13}{63}+4×\frac{1}{126}=\frac{20}{9}$----------------------(12分)

點(diǎn)評(píng) 本題考查離散型隨機(jī)變量的分布列以及期望的求法,古典概型的概率的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=x3+ax2+bx+1,(x∈R)在x=3取得極小值
(1)求函數(shù)f(x)的極小值是-5,求f(x);
(2)若a=-4時(shí),函數(shù)f(x)存在極大值,求b的取值范圍及f(x)取得極大值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖1,圓O的半徑為2,AB,CE均為該圓的直徑,弦CD垂直平分半徑OA,垂足為F,沿直徑AB將半圓ACB所在平面折起,使兩個(gè)半圓所在的平面互相垂直(如圖2)
(Ⅰ)求四棱錐C-FDEO的體積
(Ⅱ)如圖2,在劣弧BC上是否存在一點(diǎn)P(異于B,C兩點(diǎn)),使得PE∥平面CDO?若存在,請(qǐng)加以證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的中心為O,它的一個(gè)頂點(diǎn)為(0,1),離心率為$\frac{{\sqrt{2}}}{2}$,過(guò)其右焦點(diǎn)的直線交該橢圓于A,B兩點(diǎn).
(1)求這個(gè)橢圓的方程;
(2)若OA⊥OB,求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知x,y滿足約束條件$\left\{\begin{array}{l}{x^2}+{y^2}≤4\\ x-2y-2≤0\\ 2x-y+2≥0\end{array}\right.$,則z=2x+y的最大值為( 。
A.2B.$\sqrt{5}$C.4D.$2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.一幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$4-\frac{π}{3}$B.$\frac{8}{3}$C.4-πD.$12-2\sqrt{2}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖:$\widehat{BCD}$是直徑為$2\sqrt{2}$的半圓,O為圓心,C是$\widehat{BD}$上一點(diǎn),且$\widehat{BC}=2\widehat{CD}$.DF⊥CD,且DF=2,$BF=2\sqrt{3}$,E為FD的中點(diǎn),Q為BE的中點(diǎn),R為FC上一點(diǎn),且FR=3RC.
(Ⅰ)求證:面BCE⊥面CDF;
(Ⅱ)求證:QR∥平面BCD;
(Ⅲ)求三棱錐F-BCE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.4月23人是“世界讀書日”,某中學(xué)在此期間開展了一系列的讀書教育活動(dòng),為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對(duì)其課外閱讀時(shí)間進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為“讀書謎”,低于60分鐘的學(xué)生稱為“非讀書謎”

(1)根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書謎”與性別有關(guān)?
非讀書迷讀書迷合計(jì)
15
45
合計(jì)
(2)將頻率視為概率,現(xiàn)在從該校大量學(xué)生中,用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中的“讀書謎”的人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方程D(X)
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$n=a+b+c+d
P(K2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若指數(shù)函數(shù)f(x)的圖象過(guò)點(diǎn)(-2,4),則f(3)=$\frac{1}{8}$;不等式f(x)+f(-x)<$\frac{5}{2}$的解集為(-1,1).

查看答案和解析>>

同步練習(xí)冊(cè)答案