【題目】已知函數(shù),若方程f(x)=a有四個(gè)不同的解x1,x2,x3,x4,且x1<x2<x3<x4,則的取值范圍為(  )

A. (﹣1,+∞)B. (﹣1,1]C. (﹣∞,1)D. [﹣1,1)

【答案】B

【解析】

由方程f(x)=a,得到x1,x2關(guān)于x=﹣1對(duì)稱,且x3x4=1;化簡(jiǎn),利用數(shù)形結(jié)合進(jìn)行求解即可.

作函數(shù)f(x)的圖象如圖所示,∵方程f(x)=a有四個(gè)不同的解x1,x2,x3,x4,且x1<x2<x3<x4

∴x1,x2關(guān)于x=﹣1對(duì)稱,即x1+x2=﹣2,0<x3<1<x4,則|log2x3|=|log2x4|,

即﹣log2x3=log2x4,則log2x3+log2x4=0,即log2x3x4=0,則x3x4=1;

當(dāng)|log2x|=1得x=2或,則1<x4≤2;≤x3<1;

;

則函數(shù)y=﹣2x3+,在≤x3<1上為減函數(shù),則故當(dāng)x3取得y取最大值y=1,

當(dāng)x3=1時(shí),函數(shù)值y=﹣1.即函數(shù)取值范圍是(﹣1,1].

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線Cx2=2py經(jīng)過點(diǎn)(2,1).

(Ⅰ)求拋物線C的方程及其準(zhǔn)線方程;

(Ⅱ)設(shè)O為原點(diǎn),過拋物線C的焦點(diǎn)作斜率不為0的直線l交拋物線C于兩點(diǎn)M,N,直線y=1分別交直線OM,ON于點(diǎn)A和點(diǎn)B.求證:以AB為直徑的圓經(jīng)過y軸上的兩個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)為常數(shù), 為自然對(duì)數(shù)的底數(shù)).

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)內(nèi)存在三個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(1)若函數(shù)上單調(diào)遞增,求的取值范圍;

(2)當(dāng)時(shí),設(shè)函數(shù)的最小值為,求證:;

(3)求證:對(duì)任意的正整數(shù),都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左焦點(diǎn)為,右焦點(diǎn)為,設(shè)M,N是橢圓C上位于x軸上方的兩動(dòng)點(diǎn),且直線與直線平行,交于點(diǎn)D

(Ⅰ)求的坐標(biāo);

(Ⅱ)求的最小值;

(Ⅲ)求證:是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知復(fù)數(shù)z滿足|z|,z的實(shí)部大于0,z2的虛部為2.

1)求復(fù)數(shù)z

2)設(shè)復(fù)數(shù)z,z2zz2之在復(fù)平面上對(duì)應(yīng)的點(diǎn)分別為A,B,C,求(的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線的焦點(diǎn)為F,圓,點(diǎn)為拋物線上一動(dòng)點(diǎn).已知當(dāng)的面積為.

(I)求拋物線方程;

(II)若,過P做圓C的兩條切線分別交y軸于M,N兩點(diǎn),求面積的最小值,并求出此時(shí)P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求圓的極坐標(biāo)方程;

(2)已知射線,若與圓交于點(diǎn)(異于點(diǎn)),與直線交于點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)兩個(gè)向量,滿足||=2,||=1,,的夾角為60°,若向量2t7與向量t的夾角為鈍角,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案