已知為公差不為零的等差數(shù)列,首項(xiàng),的部分項(xiàng)、、 、恰為等比數(shù)列,且,,.
(1)求數(shù)列的通項(xiàng)公式(用表示);
(2)設(shè)數(shù)列的前項(xiàng)和為, 求證:(是正整數(shù)
(1) (2)見解析
【解析】
試題分析:
(1)由題得a1,a5,a17是成等比數(shù)列的,所以,則可以利用公差d和首項(xiàng)a來表示,進(jìn)而得到d的值,得到an的通項(xiàng)公式.
(2)利用第一問可以求的等比數(shù)列、、 、中的前三項(xiàng),得到該等比數(shù)列的通項(xiàng)公式,進(jìn)而得到的通項(xiàng)公式,再利用分組求和法可得到Sn的表達(dá)式,可以發(fā)現(xiàn)為不可求和數(shù)列,所以需要把放縮成為可求和數(shù)列,考慮利用的二項(xiàng)式定理放縮證明,即,故求和即可證明原不等式.
試題解析:
(1)設(shè)數(shù)列的公差為,
由已知得,,成等比數(shù)列,
∴ ,且 2分
得或
∵ 已知為公差不為零
∴, 3分
∴. 4分
(2)由(1)知 ∴ 5分
而等比數(shù)列的公比.
∴ 6分
因此,
∵
∴ 7分
∴ 9分
∵當(dāng)時(shí),
∴(或用數(shù)學(xué)歸納法證明此不等式)
∴ 11分
∴當(dāng)時(shí),,不等式成立;
當(dāng)時(shí),
綜上得不等式成立. 14分
法二∵當(dāng)時(shí),
∴(或用數(shù)學(xué)歸納法證明此不等式)
∴ 11分
∴當(dāng)時(shí),,不等式成立;
當(dāng)時(shí),,不等式成立;
當(dāng)時(shí),
綜上得不等式成立. 14分
(法三) 利用二項(xiàng)式定理或數(shù)學(xué)歸納法可得:
所以,時(shí),,
時(shí), 綜上得不等式成立.
考點(diǎn):放縮法 等差數(shù)列 等比數(shù)學(xué) 二項(xiàng)式定理 不等式
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省紹興市高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知等比數(shù)列的前項(xiàng)和.設(shè)公差不為零的等差數(shù)列滿足:,且成等比.
(Ⅰ) 求及;
(Ⅱ) 設(shè)數(shù)列的前項(xiàng)和為.求使的最小正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知是公差不為零的等差數(shù)列, 且成等
比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令且,求數(shù)列的通項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知是公差不為零的等差數(shù)列, 且成等
比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令且,求數(shù)列的通項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知是公差不為零的等差數(shù)列, 且成等
比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令且,求數(shù)列的通項(xiàng).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com