17.已知橢圓4x2+y2=1及直線y=x+m.
(1)直線和橢圓有公共點(diǎn),求實(shí)數(shù)m的取值范圍;
(2)若m=$\frac{\sqrt{2}}{2}$,求直線被橢圓截得的弦長.

分析 (1)把直線y=x+m代入橢圓方程4x2+y2=1,化為:5x2+2mx+m2-1=0,直線和橢圓有公共點(diǎn),可得△≥0,解得實(shí)數(shù)m的取值范圍.
(2)設(shè)交點(diǎn)A(x1,y1),B(x2,y2).由m=$\frac{\sqrt{2}}{2}$,可得10x2+2$\sqrt{2}$x-1=0,利用|AB|=$\sqrt{2[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$即可得出.

解答 解:(1)把直線y=x+m代入橢圓方程4x2+y2=1,化為:5x2+2mx+m2-1=0,
∵直線和橢圓有公共點(diǎn),∴△=4m2-20(m2-1)≥0,解得$-\frac{\sqrt{5}}{2}$≤m$≤\frac{\sqrt{5}}{2}$.
∴實(shí)數(shù)m的取值范圍是$[-\frac{\sqrt{5}}{2},\frac{\sqrt{5}}{2}]$.
(2)設(shè)交點(diǎn)A(x1,y1),B(x2,y2).
由m=$\frac{\sqrt{2}}{2}$,可得5x2+$\sqrt{2}$x-$\frac{1}{2}$=0,即10x2+2$\sqrt{2}$x-1=0,
∴x1+x2=-$\frac{\sqrt{2}}{5}$,x1•x2=-$\frac{1}{10}$,
∴|AB|=$\sqrt{2[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{2(\frac{2}{25}+\frac{4}{10})}$=$\frac{2\sqrt{6}}{5}$.

點(diǎn)評 本題考查了直線與橢圓的相交的條件、弦長公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.拋物線y2=16x的焦點(diǎn)到準(zhǔn)線的距離是( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=a+bcosx+csinx的圖象經(jīng)過點(diǎn)A(0,1)及$B(\frac{π}{2},1)$
(1)已知b>0,求f(x)的單調(diào)遞減區(qū)間;
(2)已知$x∈(0,\frac{π}{2})$時(shí),|f(x)|≤2恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a取上述范圍內(nèi)的最大整數(shù)值時(shí),若有實(shí)數(shù)m,n,φ,使得mf(x)+nf(x-φ)=1對于x∈R恒成立,求m,n,φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓C的圓心在直線2x-y-3=0上,且經(jīng)過點(diǎn)A(5,2),B(3,2)
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)直線l過點(diǎn)P(2,1)且與圓C相交,所得弦長為2$\sqrt{6}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,右焦點(diǎn)F,短軸兩端點(diǎn)為B1,B2,且$\overrightarrow{F{B}_{1}}$•$\overrightarrow{F{B}_{2}}$=4.
(1)求橢圓的方程;
(2)過點(diǎn)M(0,-1)作直線l交橢圓于A、B兩點(diǎn),交x軸于N點(diǎn),且滿足$\overrightarrow{NA}$=-$\frac{7}{5}$$\overrightarrow{NB}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=loga(4-x2)在區(qū)間[0,2)上單調(diào)遞增,則實(shí)數(shù)a取值范圍為0<a<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知實(shí)數(shù)m,n滿足2m-n=3.
(1)若|m|+|n+3|≥9,求實(shí)數(shù)m的取值范圍;
(2)求$|{\frac{5}{3}m-\frac{1}{3}n}|+|{\frac{1}{3}m-\frac{2}{3}n}$|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)g(x)滿足g(x)=g($\frac{1}{x}$),當(dāng)x∈[$\frac{1}{3}$,1]時(shí),g(x)=-3lnx.若函數(shù)f(x)=g(x)-mx在區(qū)間[$\frac{1}{3}$,3]上有三個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。瑒t實(shí)數(shù)m的取值范圍是( 。
A.[$\frac{ln3}{3}$,$\frac{1}{e}$)B.[ln3,$\frac{3}{e}$)C.[ln3,$\frac{1}{e}$)D.(0,$\frac{1}{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,在平行四邊形ABCD中,點(diǎn)E在AB上且EB=2AE,AC與DE交于點(diǎn)F,則△CDF的周長與△AEF的周長之比為( 。
A.1:3B.3:1C.1:2D.2:1

查看答案和解析>>

同步練習(xí)冊答案