精英家教網 > 高中數學 > 題目詳情

.圖(1)~(4)分別包含1個、5個、13個、25個第二十九屆北京奧運會吉祥物“福娃迎迎”,按同樣的方式構造圖形,設第個圖形包含個“福娃迎迎”,

   ; ____________.(答案用數字或的解析式表示)

 

【答案】

41,4(n-1)

【解析】

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,邊長為4的正方形ABCD中
(1)點E,F分別是AB,BC的中點,將△AED,△CFD分別沿DE,DF折A起,使A,C兩點重合于點A',求證:面A'DF⊥面A'EF.
(2)當BE=BF=
14
BC時,求三棱錐A'-EFD的高.

查看答案和解析>>

科目:高中數學 來源: 題型:

本題包括(1)、(2)、(3)、(4)四小題,請選定其中兩題,并在答題卡指定區(qū)域內答,
若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
(1)、選修4-1:幾何證明選講
如圖,∠PAQ是直角,圓O與AP相切于點T,與AQ相交于兩點B,C.求證:BT平分∠OBA
(2)選修4-2:矩陣與變換(本小題滿分10分)
若點A(2,2)在矩陣M=
cosα-sinα
sinαcosα
對應變換的作用下得到的點為B(-2,2),求矩陣M的逆矩陣
(3)選修4-2:矩陣與變換(本小題滿分10分)
在極坐標系中,A為曲線ρ2+2ρcosθ-3=0上的動點,B為直線ρcosθ+ρsinθ-7=0上的動點,求AB的最小值.
(4)選修4-5:不等式選講(本小題滿分10分)
已知a1,a2…an都是正數,且a1•a2…an=1,求證:(2+a1)(2+a2)…(2+an)≥3n

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•泰安二模)形狀如圖所示的三個游戲盤中(圖(1)是正方形,M、N分別是所在邊中點,圖(2)是半徑分別為2和4的兩個同心圓,O為圓心,圖(3)是正六邊形,點P為其中心)各有一個玻璃小球,依次水平搖動三個游戲盤,當小球靜止后,就完成了一局游戲.

(1)一局游戲后,這三個盤中的小球都停在陰影部分的概率是多少?
(II)用隨機變量ξ表示一局游戲后,小球停在陰影部分的事件個數與小球沒有停在陰影部分的事件個數之差的絕對值,求隨機變量ξ的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•河北區(qū)二模)已知如圖(1),梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π2
,AB=BC=2AD=4,E、F分別是AB、CD上的動點,且EF∥BC,設AE=x(0<x<4).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF,如圖(2).
(Ⅰ)求證:平面ABE⊥平面ABCD;
(Ⅱ)若以B、C、D、F為頂點的三棱錐的體積記為f(x),求f(x)的最大值;
(Ⅲ)當f(x)取得最大值時,求異面直線CD和BE所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•珠海二模)如圖,長方體ABCD-A1B1C1D1中,CC1=4,AB=BC=3.
(1)若E、F分別是BC1、A1C1中點,求證:EF∥平面DCC1;
(2)求二面角A1-BC1-D的正弦值.

查看答案和解析>>

同步練習冊答案