若(a+1)3>(3-2a)3,試求實(shí)數(shù)a的取值范圍.

答案:
解析:

  分析:雖然a+1與3-2a的正負(fù)不確定,但冪函數(shù)y=x3在R上是增函數(shù),直接由單調(diào)性可求得實(shí)數(shù)a的取值范圍.

  解:由下圖可知,函數(shù)y=x3在(-∞,+∞)上單調(diào)遞增,所以a+1>3-2a,解得a>

  所以,實(shí)數(shù)a的取值范圍是

  點(diǎn)評(píng):此題切忌機(jī)械地模仿變式三的解法,而忽視了函數(shù)間定義域的不同.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•鹽城二模)設(shè)函數(shù)fn(x)=-xn+3ax+b(n∈N*,a,b∈R).
(1)若a=b=1,求f3(x)在[0,2]上的最大值和最小值;
(2)若對(duì)任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,求a的取值范圍;
(3)若|f4(x)|在[-1,1]上的最大值為
12
,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)數(shù)學(xué)公式(n∈N*,a,b∈R).
(1)若a=b=1,求f3(x)在[0,2]上的最大值和最小值;
(2)若對(duì)任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,求a的取值范圍;
(3)若|f4(x)|在[-1,1]上的最大值為數(shù)學(xué)公式,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年江蘇省鹽城市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

設(shè)函數(shù)(n∈N*,a,b∈R).
(1)若a=b=1,求f3(x)在[0,2]上的最大值和最小值;
(2)若對(duì)任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,求a的取值范圍;
(3)若|f4(x)|在[-1,1]上的最大值為,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:鹽城二模 題型:解答題

設(shè)函數(shù)fn(x)=-xn+3ax+b(n∈N*,a,b∈R).
(1)若a=b=1,求f3(x)在[0,2]上的最大值和最小值;
(2)若對(duì)任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,求a的取值范圍;
(3)若|f4(x)|在[-1,1]上的最大值為
1
2
,求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案