年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
若為集合且的子集,且滿足兩個(gè)條件:
①;②對(duì)任意的,至少存在一個(gè),使或.
… | |||
… | |||
… | … | … | … |
… |
則稱集合組具有性質(zhì).如圖,作行列數(shù)表,定義數(shù)表中的第行第列的數(shù)為.
(Ⅰ)當(dāng)時(shí),判斷下列兩個(gè)集合組是否具有性質(zhì),如果是請(qǐng)畫出所對(duì)應(yīng)的表格,如果不是請(qǐng)說明理由;
集合組1:;集合組2:.
(Ⅱ)當(dāng)時(shí),若集合組具有性質(zhì),請(qǐng)先畫出所對(duì)應(yīng)的行3列的一個(gè)數(shù)表,再依此表格分別寫出集合;(Ⅲ)當(dāng)時(shí),集合組是具有性質(zhì)且所含集合個(gè)數(shù)最小的集合組,求的值及的最小值.(其中表示集合所含元素的個(gè)數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
數(shù)列滿足下列條件:,且對(duì)于任意的正整數(shù),恒有,則的值為 ( )A.1 B.299 C.2100 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若是等比數(shù)列,是互不相等的正整數(shù),則有正確的結(jié)論:.類比上述性質(zhì),相應(yīng)地,若是等差數(shù)列,是互不相等的正整數(shù),則有正確的結(jié)論: . .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在數(shù)列{an}中,若a-a=p(n≥2,n∈N+,p為常數(shù)),則稱{an}為“等方差數(shù)列”.下列是對(duì)“等方差數(shù)列”的判斷:①若{an}是等方差數(shù)列,則{a}是等差數(shù)列;②{(-1)n}是等方差數(shù)列;
③若{an}是等方差數(shù)列,則{akn}(k∈N+,k為常數(shù))也是等方差數(shù)列;
④若{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列為常數(shù)數(shù)列.其中正確命題的序號(hào)為 .(將所有正確命題的序號(hào)填在橫線上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
兩千多年前,古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家曾經(jīng)在沙灘上研究數(shù)學(xué)問題,他們?cè)谏碁┥袭孅c(diǎn)或用小石子來表示數(shù),按照點(diǎn)或小石子能排列的形狀對(duì)數(shù)進(jìn)行分類,如圖中的實(shí)心點(diǎn)個(gè)數(shù)1,5,12,22,…,被稱為五角形數(shù),其中第1個(gè)五角形數(shù)記作a1=1,第2個(gè)五角形數(shù)記作a2=5,第3個(gè)五角形數(shù)記作a3=12,第4個(gè)五角形數(shù)記作a4=22,…,若按此規(guī)律繼續(xù)下去,若an=145,則n= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
數(shù)列滿足,,其中,.給出下列命題:
①,對(duì)于任意,;②,對(duì)于任意,;
③,,當(dāng)()時(shí)總有.
其中正確的命題是______.(寫出所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
關(guān)于數(shù)列有下面四個(gè)判斷:①若a、b、c、d成等比數(shù)列,則a+b、b+c、c+d也成等比數(shù)列;
②若數(shù)列既是等差數(shù)列,也是等比數(shù)列,則為常數(shù)列;
、廴魯(shù)列的前n次和為S,且S= an -1,(a),則為等差或等比數(shù)列;
④數(shù)列為等差數(shù)列,且公差不為零,則數(shù)列中不含有a=a(m≠n)。
其中正確判斷序號(hào)是 。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com