分析 (Ⅰ)取AC中點(diǎn)G,連結(jié)FG、BG,推導(dǎo)出EF∥BG,由此能證明EF∥面ABC.
(Ⅱ)連結(jié)EC,VA-BCDE=VE-ABC+VE-ADC,由此能求出四棱錐A-BCDE的體積.
解答 證明:(Ⅰ)取AC中點(diǎn)G,連結(jié)FG、BG,
∵F,G分別是AD,AC的中點(diǎn)
∴FG∥CD,且FG=$\frac{1}{2}$DC=1.
∵BE∥CD∴FG與BE平行且相等
∴EF∥BG.
∵EF?面ABC,BG?面ABC,
∴EF∥面ABC.
解:(Ⅱ)連結(jié)EC,該四棱錐分為兩個(gè)三棱錐E-ABC和E-ADC.
∴四棱錐A-BCDE的體積VA-BCDE=VE-ABC+VE-ADC=$\frac{1}{3}×\frac{\sqrt{3}}{4}×1+\frac{1}{3}×1×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{4}$.
點(diǎn)評(píng) 本題考查線面平行的證明,考查四棱錐的體積的求法,是中檔題,解題時(shí)要認(rèn)真這題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,3) | B. | (-3,-2)∪(3,+∞) | C. | (-3,3) | D. | (-∞,-3)∪(2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>c>b | B. | b>c>a | C. | c>a>b | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{13}{6}$ | C. | $\frac{10}{3}$ | D. | $\frac{17}{4}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com