【題目】(本題滿分12分) 已知集合在平面直角坐標(biāo)系中,點(diǎn)M的坐標(biāo)為(x,y) ,其中。
(1)求點(diǎn)M不在x軸上的概率;
(2)求點(diǎn)M正好落在區(qū)域上的概率。
【答案】
(1)
(2)
【解析】解:(1)集合A={-2,0,1,3},點(diǎn)M(x,y)的坐標(biāo),
點(diǎn)M的坐標(biāo)分別是:(-2,-2),(-2,0),(-2,1),(-2,3);(0,-2),(0,0),(0,1),(0,3);
(1, -2),(1,0),(1,1),(1, 3);(3,-2),(3,0),(3,1),(3,3)共16種
點(diǎn)M不在x軸上的坐標(biāo)共有12種:(-2,-2),(0,-2),(-2,1),(-2,3);(1,-2),(0,1),(1,1),(1,3);(3,-2),(0,3),(3,1),(3,3),所以點(diǎn)M不在x軸上的概率是
(2)點(diǎn)M正好落在區(qū)域上的坐標(biāo)共有3種:(1,1),(1,3),(3,1)
故M正好落在該區(qū)域上的概率為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(Ⅰ)已知 是空間的兩個(gè)單位向量,它們的夾角為60°,設(shè)向量 , .求向量 與 的夾角; (Ⅱ)已知 是兩個(gè)不共線的向量, .求證: 共面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C: (a>b>0)的離心率為,且過點(diǎn)(1,).過橢圓C的左頂點(diǎn)A作直線交橢圓C于另一點(diǎn)P,交直線l:x=m(m>a)于點(diǎn)M.已知點(diǎn)B(1,0),直線PB交l于點(diǎn)N.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若MB是線段PN的垂直平分線,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離比到定直線的距離小1.
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)過點(diǎn)任意作互相垂直的兩條直線,分別交曲線于點(diǎn)和.設(shè)線段, 的中點(diǎn)分別為,求證:直線恒過一個(gè)定點(diǎn);
(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρ= .
(1)寫出直線l的極坐標(biāo)方程與曲線C的普通方程;
(2)若點(diǎn) P是曲線C上的動(dòng)點(diǎn),求 P到直線l的距離的最小值,并求出 P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列四個(gè)命題:
p1:若直線l和平面α內(nèi)的無數(shù)條直線垂直,則l⊥α;
p2:若f(x)=2x﹣2﹣x , 則x∈R,f(﹣x)=﹣f(x);
p3:若 ,則x0∈(0,+∞),f(x0)=1;
p4:在△ABC中,若A>B,則sinA>sinB.
其中真命題的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的增函數(shù)y=f(x)對(duì)任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求f(0);
(2)求證:f(x)為奇函數(shù);
(3)若f(k3x)+f(3x﹣9x﹣4)<0對(duì)任意x∈R恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ()經(jīng)過點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形.
(1)求橢圓的方程;
(2)動(dòng)直線: (, )交橢圓于、兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)定點(diǎn),使得以為直徑的圓恒過點(diǎn).若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣2)=0,當(dāng)x>0時(shí),xf′(x)﹣f(x)>0,則使得f(x)>0成立的x的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com