在矩形ABCD中,AB=1,BC=a,現(xiàn)沿AC折成二面角D-AC-B,使BD為異面直線AD、BC的公垂線.
(1)求證:平面ABD⊥平面ABC;
(2)當a為何值時,二面角D-AC-B為45°
 (1)證明:由題知BC⊥BD,又BC⊥AB.∴BC⊥面ABD,∴面ABC⊥面ABD.
(2)作DE⊥AB于E,由(1)知DE⊥面ABC,作EF⊥AC于F,連DF,則DF⊥AC,∴∠DFE為二面角D-AC-B的平面角.即∠DFE=45°.EF=DE=DF,∵DF=,AF=且=,解得a2=,a=.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知三棱錐中,,,,且兩兩垂直,中點,重心,現(xiàn)如圖建立空間直角坐標系。
(Ⅰ)求點的坐標;
(Ⅱ)求異面直線所成角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
如圖,已知四棱錐,底面為菱形,平面,,、分別是的中點.
(1)判定是否垂直,并說明理由。
(2)設,若上的動點,若面積的最小值為,求四棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若向量=(1,x,2),=(2,1,2),且,則x=__________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在長方體中,,,.寫出,,四點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在空間坐標系中,已知直角三角形ABC的三個頂點為A、B、C,則的值為        .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知棱長為的正方體,E為BC
的中點,求證:平面平面。(12分)
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正方體的棱長為1,在正方體表面上與點A距離是的點形成一條曲線,這條曲線的長度是                           (     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設向量是空間一個基底,則一定可以與向量構成空間的另一個基底的向量是
A.B.C.D.

查看答案和解析>>

同步練習冊答案