直線l1:x-2y+3=0,l2:2x-y-3=0,動(dòng)圓C與l1、l2都相交,并且l1、l2被圓截得的線段長(zhǎng)分別是20和16,則圓心C的軌跡方程是
 
考點(diǎn):軌跡方程
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)圓心C的坐標(biāo)為(x,y),欲求其軌跡方程,即尋找其坐標(biāo)間的關(guān)系,根據(jù)弦、弦心距、半徑三者之間的關(guān)系及點(diǎn)到直線的距離公式即可得到.
解答: 解:設(shè)圓心C的坐標(biāo)為(x,y),圓的半徑為r,
點(diǎn)C到l1、l2的距離分別為d1,d2
根據(jù)弦、弦心距、半徑三者之間的關(guān)系,有d12+102=r2,d22+82=r2
得d22-d12=36.
根據(jù)點(diǎn)到直線的距離公式,得d1=
|x-2y+3|
5
,d2=
|2x-y-3|
5

代入上式,得方程
(x-3)2
60
-
(y-3)2
60
=1

故答案為:
(x-3)2
60
-
(y-3)2
60
=1
點(diǎn)評(píng):求曲線的軌跡方程是解析幾何的基本問題.求符合某種條件的動(dòng)點(diǎn)的軌跡方程,其實(shí)質(zhì)就是利用題設(shè)中的幾何條件,用“坐標(biāo)化”將其轉(zhuǎn)化為尋求變量間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

命題“存在一個(gè)偶數(shù)是素?cái)?shù)”的否定為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(2,3),B(3,0),且
AC
=-2
CB
,則點(diǎn)C的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某一物體在某種介質(zhì)中作直線運(yùn)動(dòng),已知t時(shí)刻,它的速度為v,位移為s,且它在該介質(zhì)中所受到的阻力F與速度v的平方成正比,比例系數(shù)為k,若已知s=
1
2
t2,則該物體由位移s=0移動(dòng)到位移s=a時(shí)克服阻力所作的功為
 
.(注:變力F做功W=∫
 
s2
s1
F(s)ds,結(jié)果用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z1=a+2i,z2=2+i,且
z1
z2
為純虛數(shù),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)z=(3-i)2(i為虛數(shù)單位),則復(fù)數(shù)z的模為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Z1,Z2是復(fù)數(shù),下列命題:
①若|Z1-Z2|=0,則
.
Z1
=
.
Z2

②若Z1=
.
Z2
,則
.
Z1
=Z2
③若|Z1|=|Z2|,則Z1
.
Z1
=Z2
.
Z2

④若|Z1|=|Z2|,則Z12=Z22
以上真命題序號(hào)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖1所示是某學(xué)生的14次數(shù)學(xué)考試成績(jī)的莖葉圖,第1次到第14次的考試成績(jī)依次記為A1,A2,…A14,圖2是統(tǒng)計(jì)莖葉圖中成績(jī)?cè)谝欢ǚ秶鷥?nèi)考試次數(shù)的一個(gè)程序框圖,則輸出的n的值是( 。
A、8B、9C、10D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(x-2)ln(x2-4x+4)-(x-2)ln4的零點(diǎn)個(gè)數(shù)為( 。
A、3B、2C、1D、0

查看答案和解析>>

同步練習(xí)冊(cè)答案