【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0, ),其部分圖象如圖所示. (I)求f(x)的解析式;
(II)求函數(shù) 在區(qū)間 上的最大值及相應(yīng)的x值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系xOy中,已知直線l1:y=tanαx(0≤a<π,α ),拋物線C: (t為參數(shù)).以原點O為極點,x軸的非負半軸為極軸建立極坐標系 (Ⅰ)求直線l1和拋物線C的極坐標方程;
(Ⅱ)若直線l1和拋物線C相交于點A(異于原點O),過原點作與l1垂直的直線l2 , l2和拋物線C相交于點B(異于原點O),求△OAB的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(在平面直角坐標系xOy中,已知曲線C1:x2+y2=1,以平面直角坐標系xOy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線l:ρ(2cosθ﹣sinθ)=6.
(1)將曲線C1上的所有點的橫坐標、縱坐標分別伸長為原來的 、2倍后得到曲線C2 , 試寫出直線l的直角坐標方程和曲線C2的參數(shù)方程;
(2)在曲線C2上求一點P,使點P到直線l的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動點 與定點 的距離和它到定直線 的距離的比是 ∶ ,記點 的軌跡為 .
(1)求曲線 的方程;
(2)對于定點 ,作過點 的直線 與曲線 交于不同的兩點 , ,求△ 的內(nèi)切圓半徑的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 = ( ).
(Ⅰ)當(dāng) =2時,求函數(shù) 在(1, )處的切線方程;
(Ⅱ)若 ≥1時, ≥0,求實數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有10個不同的產(chǎn)品,其中4個次品,6個正品.現(xiàn)每次取其中一個進行測試,直到4個次品全測完為止,若最后一個次品恰好在第五次測試時被發(fā)現(xiàn),則該情況出現(xiàn)的概率是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l:x+ y﹣c=0(c>0)為公海與領(lǐng)海的分界線,一艘巡邏艇在O處發(fā)現(xiàn)了北偏東60°海面上A處有一艘走私船,走私船正向停泊在公海上接應(yīng)的走私海輪B航行,以使上海輪后逃竄.已知巡邏艇的航速是走私船航速的2倍,且兩者都是沿直線航行,但走私船可能向任一方向逃竄.
(1)如果走私船和巡邏船相距6海里,求走私船能被截獲的點的軌跡;
(2)若O與公海的最近距離20海里,要保證在領(lǐng)海內(nèi)捕獲走私船(即不能截獲走私船的區(qū)域與公海不想交).則O,A之間的最遠距離是多少海里?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的方程為x2+y2﹣6x=0,過點(1,2)的該圓的三條弦的長a1 , a2 , a3構(gòu)成等差數(shù)列,則數(shù)列a1 , a2 , a3的公差的最大值是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (a>0,且a≠1)在R上單調(diào)遞減,且關(guān)于x的方程|f(x)|=2﹣x恰好有兩個不相等的實數(shù)解,則a的取值范圍是( )
A.(0, ]
B.[ , ]
C.[ , ]∪{ }
D.[ , )∪{ }
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com