【題目】在2017年初的時候,國家政府工作報告明確提出,2017年要堅決打好藍天保衛(wèi)戰(zhàn),加快解決燃煤污染問題,全面實施散煤綜合治理.實施煤改電工程后,某縣城的近六個月的月用煤量逐漸減少,6月至11月的用煤量如下表所示:
(1)由于某些原因, 中一個數(shù)據(jù)丟失,但根據(jù)6至9月份的數(shù)據(jù)得出少樣本平均值是3.5,求出丟失的數(shù)據(jù);
(2)請根據(jù)6至9月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)現(xiàn)在用(2)中得到的線性回歸方程中得到的估計數(shù)據(jù)與10月11月的實際數(shù)據(jù)的誤差來判斷該地區(qū)的改造項目是否達到預(yù)期,若誤差均不超過0.3,則認為該地區(qū)的改造已經(jīng)達到預(yù)期,否則認為改造未達預(yù)期,請判斷該地區(qū)的煤改電項目是否達預(yù)期?(參考公式:線性回歸方程,其中)
【答案】(1)4;(2);(3)該地區(qū)的煤改電項目已經(jīng)達到預(yù)期
【解析】試題分析:(1) 設(shè)丟失的數(shù)據(jù)為,則,即可得到丟失的數(shù)據(jù);(2)用最小二乘法求出關(guān)于的線性回歸方程;(3) 當時, 當時, ,所以,該地區(qū)的煤改電項目已經(jīng)達到預(yù)期.
試題解析:
(1)設(shè)丟失的數(shù)據(jù)為,則
得,即丟失的數(shù)據(jù)是4.
(2)由數(shù)據(jù)求得,
由公式求得
∴
所以關(guān)于的線性回歸方程為
(3)當時,
同樣,當時,
所以,該地區(qū)的煤改電項目已經(jīng)達到預(yù)期.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ax2﹣bx(a,b∈R),g(x)= ﹣lnx.
(1)當a=﹣1時,f(x)與g(x)在定義域上的單調(diào)性相反,求b的取值范圍;
(2)當a,b都為0時,斜率為k的直線與曲線y=f(x)交A(x1 , y1),B(x2 , y2)(x1<x2)于兩點,求證:x1< .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 =1(a>b>0)右頂點與右焦點的距離為 ﹣1,短軸長為2 . (Ⅰ)求橢圓的方程;
(Ⅱ)過左焦點F的直線與橢圓分別交于A、B兩點,若△OAB(O為直角坐標原點)的面積為 ,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高一(1)班全體男生的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖所示,據(jù)此解答如下問題:
(1)求該班全體男生的人數(shù);
(2)求分數(shù)在之間的男生人數(shù),并計算頻率公布直方圖中之間的矩形的高;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 +y2=1(a>1),過直線l:x=2上一點P作橢圓的切線,切點為A,當P點在x軸上時,切線PA的斜率為± . (Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)O為坐標原點,求△POA面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線系方程(其中為參數(shù)).當時,直線與兩坐標軸所圍成的三角形的面積為__________,若該直線系中的三條直線圍成正三角形區(qū)域,則區(qū)域的面積為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4﹣1:幾何證明選講
如圖,⊙O和⊙O′相交于A,B兩點,過A作兩圓的切線分別交兩圓于C、D兩點,連接DB并延長交⊙O于點E.證明:
(1)ACBD=ADAB;
(2)AC=AE.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=xlnx-a(x-1)2-x,g(x)=lnx-2a(x-1),其中常數(shù)a∈R.
(Ⅰ)討論g(x)的單調(diào)性;
(Ⅱ)當a>0時,若f(x)有兩個零點x1 , x2(x1<x2),求證:在區(qū)間(1,+∞)上存在f(x)的極值點x0 , 使得x0lnx0+lnx0-2x0>0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com