分析 先求出函數(shù)的定義域,然后利用復(fù)合函數(shù)的單調(diào)性確定函數(shù)f(x)的單調(diào)遞減區(qū)間.
解答 解:由x2-3x+2>0,得x<1或x>2.
令t=x2-3x+2,則原函數(shù)化為y=$lo{g}_{\frac{1}{2}}t$,
內(nèi)函數(shù)t=x2-3x+2的增區(qū)間為(2,+∞),外函數(shù)y=$lo{g}_{\frac{1}{2}}t$為減函數(shù),
∴函數(shù)$f(x)={log_{\frac{1}{2}}}({{x^2}-3x+2})$的遞減區(qū)間為:(2,+∞).
故答案為:(2,+∞).
點評 本題主要考查了復(fù)合函數(shù)的單調(diào)性以及單調(diào)區(qū)間的求法.對應(yīng)復(fù)合函數(shù)的單調(diào)性,一要注意先確定函數(shù)的定義域,二要利用復(fù)合函數(shù)與內(nèi)層函數(shù)和外層函數(shù)單調(diào)性之間的關(guān)系進(jìn)行判斷,判斷的依據(jù)是“同增異減”,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com