9.已知函數(shù)$f(x)=\left\{\begin{array}{l}{e^{|x-1|}}\;\;,\;x>0\\-{x^2}-2x+1\;,x≤0\end{array}\right.$,若關(guān)于x的方程f2(x)-3f(x)+a=0(a∈R)有8個不等的實數(shù)根,則a的取值范圍是( 。
A.$(0,\frac{1}{4})$B.$(\frac{1}{3},3)$C.(1,2)D.$(2,\frac{9}{4})$

分析 畫出函數(shù)的圖象,利用函數(shù)的圖象,判斷f(x)的范圍,然后利用二次函數(shù)的性質(zhì)求解a的范圍.

解答 解:函數(shù)$f(x)=\left\{\begin{array}{l}{e^{|x-1|}}\;\;,\;x>0\\-{x^2}-2x+1\;,x≤0\end{array}\right.$,的圖象如圖:
關(guān)于x的方程f2(x)-3f(x)+a=0(a∈R)有8個不等的實數(shù)根,f(x)必須有兩個不相等的實數(shù)根,由函數(shù)f(x)圖象
可知f(x)∈(1,2).令t=f(x),
方程f2(x)-3f(x)+a=0化為:a=-t2+3t,t∈(1,2),
a=-t2+3t,開口向下,對稱軸為:t=$\frac{3}{2}$,
可知:a的最大值為:-($\frac{3}{2}$)2+3×$\frac{3}{2}$=$\frac{9}{4}$,
a的最小值為:2.
a∈(2,$\frac{9}{4}$].
故選:D.

點評 本題考查函數(shù)與方程的應(yīng)用,函數(shù)的零點個數(shù)的判斷與應(yīng)用,考查數(shù)形結(jié)合以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.從含有兩件正品a1,a2和一件次品b的3件產(chǎn)品中每次任取一件,每次取出后不放回,連續(xù)取兩次.
(1)寫出基本事件空間;
(2)求取出的兩件產(chǎn)品中恰有一件次品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,F(xiàn)1,F(xiàn)2分別是雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a,b>0)的左、右焦點,B是虛軸的端點,直線F1B與C的兩條漸近線分別交于P,Q兩點,線段PQ的垂直平分線與x軸交于點M,若|MF2|=|F1F2|,則雙曲線C的漸近線方程是( 。
A.y=±xB.$y=±\sqrt{3}x$C.$y=±\frac{1}{2}x$D.$y=±\frac{{\sqrt{2}}}{2}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,∠BAC=90°,AB=AA1,點M,N分別為A1B 和B1C1的中點.
(1)證明:A1M⊥平面MAC;
(2)證明:MN∥平面A1ACC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.觀察如圖,則第1009行的各數(shù)之和等于20172

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如果數(shù)列{an}的前n項之和為Sn=3+2n,那么a12+a22+a32+…+an2=$\frac{{4}^{n}+71}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知點A(1,1),B(-2,2),直線l過點P(-1,-1)且與線段AB始終有交點,則直線l的斜率k的取值范圍為k≤-3,或k≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.雙曲線$\frac{y^2}{16}-\frac{x^2}{9}=1$的焦點是(0,5),(0,-5);離心率為$\frac{5}{4}$;漸近線為y=$±\frac{4}{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)偶函數(shù)f(x)的定義域為R,函數(shù)g(x)=$\frac{x}{{{x^2}+1}}$,則下列結(jié)論中正確的是( 。
A.|f(x)|g(x)是奇函數(shù)B.f(x)g(x)是偶函數(shù)C.f(x)|g(x)|是奇函數(shù)D.|f(x)g(x)|是奇函數(shù)

查看答案和解析>>

同步練習(xí)冊答案