已知定義在R上的函數(shù)y=f(x)滿足f(x)=-f(x+1),求證:函數(shù)y=f(x)是周期函數(shù).
考點(diǎn):函數(shù)的周期性
專(zhuān)題:證明題,函數(shù)的性質(zhì)及應(yīng)用
分析:確定(x+2)=-f(x+1)=f(x),即可證明函數(shù)y=f(x)是周期函數(shù).
解答: 證明:∵定義在R上的函數(shù)y=f(x)滿足f(x)=-f(x+1),
∴f(x+1)=-f(x),
∴f(x+2)=-f(x+1)=f(x),
∴函數(shù)y=f(x)是周期函數(shù).
點(diǎn)評(píng):本題考查函數(shù)y=f(x)是周期函數(shù),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線:y2=2px(p>0),傾斜角為45°的弦AB的中點(diǎn)為M
(1)若M=(m,2)求拋物線方程;
(2)若以AB為直徑的圓過(guò)原點(diǎn),求實(shí)數(shù)M的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=-
15
,且α∈(
2
,2π),則cosα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①已知集合M滿足∅?M⊆{1,2,3},且M中至少有一個(gè)奇數(shù),這樣的集合M有6個(gè);
②已知函數(shù)f(x)=
33x-1
ax2+ax-3
的定義域是R,則實(shí)數(shù)a的取值范圍是(-12,0);
③函數(shù)f(x)=loga(x-3)+1(a>0且a≠1)圖象恒過(guò)定點(diǎn)(4,2);
④已知函數(shù)f(x)=x2+bx+c對(duì)任意實(shí)數(shù)t都有f(3+t)=f(3-t),則f(1)>f(4)>f(3).
其中正確的命題序號(hào)是
 
(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為是矩形,PA⊥底面ABCD,E為棱PD的中點(diǎn),AP=2,AD=2
3
,且三棱錐E-ACD的體積為
3

(Ⅰ)求證:PB∥平面AEC;
(Ⅱ)求直線AE與平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1、拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為坐標(biāo)原點(diǎn)O,從每條曲線上各取兩個(gè)點(diǎn),將其坐標(biāo)記錄于表中:
x3-24
2
y-2
3
0-4
2
2
(Ⅰ)求C1、C2的標(biāo)準(zhǔn)方程;
(Ⅱ)請(qǐng)問(wèn)是否存在直線l同時(shí)滿足條件:(。┻^(guò)C2的焦點(diǎn)F;(ⅱ)與C1交于不同兩點(diǎn)Q、R,且滿足
OQ
OR
?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)已知橢圓C1的左頂點(diǎn)為A,過(guò)A作兩條互相垂直的弦AM、AN分別另交橢圓于M、N兩點(diǎn).當(dāng)直線AM的斜率變化時(shí),直線MN是否過(guò)x軸上的一定點(diǎn),若過(guò)定點(diǎn),請(qǐng)給出證明,并求出該定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的定義域:
(1)y=
1
1-log7x

(2)y=
log
1
2
x

(3)y=
(
1
5
)x-1

(4)y=log2(x2+x-2)
(5)y=
log0.1(3x-2)

(6)y=
lg(2x-1)
1-x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn+n=2an(n∈N*).
(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=(2n+1)an+2n+1,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱錐的主視圖與俯視圖如圖,俯視圖是邊長(zhǎng)是2的正三角形,那么該三棱錐的左視圖可能為( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊(cè)答案