【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且(2bccosAacosC

1)求A;

2)若△ABC的面積為,求a的最小值.

【答案】1A.(2a的最小值為2

【解析】

1)由正弦定理將(2bccosAacosC,轉(zhuǎn)化為(2sinBsinCcosAsinAcosC,再利用兩角和的正弦公式求解.

2)根據(jù)AABC的面積為bcsinAbc,求得bc4,由余弦定理得a2b2+c22bccosAb2+c2bc,再利用基本不等式求解.

1)∵(2bccosAacosC,

∴由正弦定理可得:(2sinBsinCcosAsinAcosC,

2sinBcosAsinCcosA+sinAcosCsinA+C)=sinB,

sinB≠0,

cosA

A∈(0,π),

A

2)∵A,ABC的面積為bcsinAbc,

bc4,

a2b2+c22bccosAb2+c2bc≥2bcbcbc4,

解得a≥2,當(dāng)且僅當(dāng)bc2時(shí)等號(hào)成立,

a的最小值為2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有若干撲克牌:6張牌面分別是2,3,4,56,7的撲克牌各一張,先后從中取出兩張.若每次取后放回,連續(xù)取兩次,點(diǎn)數(shù)之和是偶數(shù)的概率為;若每次取后不放回,連續(xù)取兩次,點(diǎn)數(shù)之和是偶數(shù)的概率為,則(

A.B.C.D.以上三種情況都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù),

(1)討論函數(shù)的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間;

(2)已知,,若對(duì)任意都成立,求的最大值;

(3)設(shè),若存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),設(shè)直線的交點(diǎn)為,當(dāng)變化時(shí)點(diǎn)的軌跡為曲線.

1)求出曲線的普通方程;

2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,點(diǎn)為曲線上的動(dòng)點(diǎn),求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解學(xué)生的身體狀況,某校隨機(jī)抽取了一批學(xué)生測(cè)量體重.經(jīng)統(tǒng)計(jì),這批學(xué)生的體重?cái)?shù)據(jù)(單位:千克)全部介于4570之間.將數(shù)據(jù)分成以下5組:第1,第2,第3,第4,第5,得到如圖所示的頻率分布直方圖,現(xiàn)采用分層抽樣的方法,從第3,4,5組中隨機(jī)抽取6名學(xué)生,則第3,4,5組抽取的學(xué)生人數(shù)依次為(

A.4,56B.3,2,1C.2,4,5D.2,1,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念,貴陽(yáng)一中“保護(hù)飲用水源地”課題研究小組的同學(xué)們對(duì)紅楓湖、百花湖、阿哈水庫(kù)、花溪水庫(kù)、北郊水庫(kù)5處水源地進(jìn)行了樣本采集并送環(huán)保部門進(jìn)行水質(zhì)檢測(cè).已知5處水源地中有1處被某污染物污染,需要通過(guò)檢測(cè)水源樣本來(lái)確定被污染的水源地現(xiàn)有三個(gè)檢測(cè)方案:

方案甲:對(duì)5個(gè)樣本逐個(gè)檢測(cè),直到能確定被污染的水源地為止.

方案乙:先任取1個(gè)樣本進(jìn)行檢測(cè),若檢測(cè)到污染物,則檢測(cè)結(jié)束;若未檢測(cè)到污染物,則在剩余4個(gè)樣本中任取2個(gè),并將這2個(gè)樣本取部分混合在一起檢測(cè),若檢測(cè)到污染物,則再在這2個(gè)樣本中任取一個(gè)檢測(cè),否則在剩余2個(gè)未檢測(cè)樣本中任取一個(gè)檢測(cè).

方案丙:先任取2個(gè)樣本,并將這2個(gè)樣本取部分混合在一起檢測(cè),若檢測(cè)到污染物,則再在這2個(gè)樣本中任取一個(gè)檢測(cè);若未檢測(cè)到污染物,則對(duì)剩余3個(gè)未檢測(cè)樣本進(jìn)行逐個(gè)檢測(cè),直到能確定被污染的水源地為止.假設(shè)隨機(jī)變量分別表示用方案甲、方案乙、方案丙進(jìn)行檢測(cè)所需的檢測(cè)次數(shù).

1)求能取到的最大值和其對(duì)應(yīng)的概率;

2)求的期望假設(shè)每次檢測(cè)的費(fèi)用都相同,請(qǐng)從經(jīng)濟(jì)角度說(shuō)明方案乙和方案丙哪一個(gè)更適合?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《中華人民共和國(guó)道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過(guò)人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國(guó)道路交通安全法》 第90條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):

月份

1

2

3

4

5

違章駕駛員人數(shù)

120

105

100

90

85

(1)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)y與月份之間的回歸直線方程+

(2)預(yù)測(cè)該路口7月份的不“禮讓斑馬線”違章駕駛員人數(shù);

(3)交警從這5個(gè)月內(nèi)通過(guò)該路口的駕駛員中隨機(jī)抽查了50人,調(diào)查駕駛員不“禮讓斑馬線”行為與駕齡的關(guān)系,得到如下2列聯(lián)表:

不禮讓斑馬線

禮讓斑馬線

合計(jì)

駕齡不超過(guò)1年

22

8

30

駕齡1年以上

8

12

20

合計(jì)

30

20

50

能否據(jù)此判斷有97.5的把握認(rèn)為“禮讓斑馬線”行為與駕齡有關(guān)?

參考公式及數(shù)據(jù):,.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)家劉徽在其《海島算經(jīng)》中給出了著名的望海島問(wèn)題及二次測(cè)望方法:今有望海島,立兩表,齊高三丈,前后相去千步,令后表與前表三相直.從前表卻行一百二十三步,人目著地取望島峰,與表末三合.從后表卻行一百二十七步,人目著地取望島峰,亦與表末三合.問(wèn)島高及去表各幾何?這一方法領(lǐng)先印度500多年,領(lǐng)先歐洲1300多年.其大意為:測(cè)量望海島PQ的高度及海島離岸距離,在海岸邊立兩根等高的標(biāo)桿共面,均垂直于地面),使目測(cè)點(diǎn)EPB共線,目測(cè)點(diǎn)FP、D共線,測(cè)出AECF、AC即可求出島高和距離(如圖).,則________;______.

查看答案和解析>>

同步練習(xí)冊(cè)答案