9.已知p:方程$\frac{{x}^{2}}{9-m}$+$\frac{{y}^{2}}{2m}$=1表示焦點在x軸上的橢圓,q:雙曲線$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{m}$=1的離心率e∈($\frac{\sqrt{6}}{2}$,$\sqrt{2}$).
(1)若橢圓$\frac{{x}^{2}}{9-m}$+$\frac{{y}^{2}}{2m}$=1的焦點和雙曲線$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{m}$=1的頂點重合,求實數(shù)m的值;
(2)若“p∧q”是真命題,求實數(shù)m的取值范圍.

分析 (1)由雙曲線方程可知雙曲線的焦點在x軸上,進一步可得橢圓的焦點在x軸上,求出橢圓的半焦距與雙曲線的實半軸長,列等式求得m值;
(2)由方程$\frac{{x}^{2}}{9-m}$+$\frac{{y}^{2}}{2m}$=1表示焦點在x軸上的橢圓,雙曲線$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{m}$=1的離心率e∈($\frac{\sqrt{6}}{2}$,$\sqrt{2}$)分別求出m的范圍,結合“p∧q”是真命題,取交集得答案.

解答 解:(1)由雙曲線$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{m}$=1,得m>0,且a2=5,a=$\sqrt{5}$.
∵橢圓$\frac{{x}^{2}}{9-m}$+$\frac{{y}^{2}}{2m}$=1的焦點和雙曲線$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{m}$=1的頂點重合,
∴橢圓$\frac{{x}^{2}}{9-m}$+$\frac{{y}^{2}}{2m}$=1的焦點在x軸上,且a2=9-m,b2=2m,則$c=\sqrt{9-3m}$,
∴$\sqrt{9-3m}=\sqrt{5}$,解得m=$\frac{4}{3}$;
(2)∵方程$\frac{{x}^{2}}{9-m}$+$\frac{{y}^{2}}{2m}$=1表示焦點在x軸上的橢圓,
∴9-m>2m>0,即0<m<3,
∵雙曲線$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{m}$=1的離心率e∈($\frac{\sqrt{6}}{2}$,$\sqrt{2}$),
∴$\frac{5+m}{5}∈$($\frac{3}{2},2$),即$\frac{5}{2}<m<5$,
若“p∧q”是真命題,則$\frac{5}{2}$<m<3.

點評 本題考查橢圓與雙曲線的簡單性質(zhì),考查命題的真假判斷與應用,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.在△ABC中,三個內(nèi)角A,B,C的對邊分別為a,b,c,已知$\frac{cosA}{cosB}$=$\frac{a}$=$\sqrt{3}$.
(1)求C;
(2)如圖,設半徑為R的圓O過A,B,C三點,點P位于劣弧$\widehat{AC}$上,∠PAB=θ,求四邊形APCB面積S(θ)的解析式及最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設x1,x2,x3為是不同的自然數(shù),求s=$\frac{{x}_{1}}{1}$+$\frac{{x}_{2}}{4}$+$\frac{{x}_{3}}{9}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.下列函數(shù)中,既是奇函數(shù),又在[0,1]上是增函數(shù)的是( 。
A.y=|x|B.y=x2+1C.y=x3D.y=sinx(x∈[0,$\frac{π}{2}$])

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知角α的終邊上有一點P(1,3),則$\frac{sin(π-α)-sin(\frac{π}{2}+α)}{cos(\frac{3π}{2}-α)+2cos(-π+α)}$的值為-$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設偶函數(shù)f(x)的定義域為R,當x∈[0,+∞)時,f(x)是增函數(shù),則f(-2),f(π),f(-3)的大小關系是(  )
A.f(-2)<f(π)<f(-3)B.f(π)<f(-2)<f(-3)C.f(-2)<f(-3)<f(π)D.f(-3)<f(-2)<f(π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)=|ln(x-1)|,若f(a)=f(b),則a+2b的取值范圍為( 。
A.(4,+∞)B.$[3+2\sqrt{2}\;\;,\;\;+∞)$C.[6,+∞)D.$(4\;\;,\;\;3+2\sqrt{2}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設f(x)是R上的奇函數(shù),且當x∈(0,+∞)時,f(x)=x(1+x3)-1,求f(x)在R上的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=x2+alnx-(a+2)x(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當f(x)有極大值與極小值時,求證函數(shù)f(x)在定義域內(nèi)有唯一的零點.

查看答案和解析>>

同步練習冊答案