【題目】平面幾何中,有邊長為的正三角形內任意點到三邊距離之和為定值.類比上述命題,棱長為的正四面體內任一點到四個面的距離之和為( )
A. B. C. D.
科目:高中數學 來源: 題型:
【題目】一機器可以按各種不同的速度運轉,其生產物件有一些會有缺點,每小時生產有缺點物件的多少隨機器運轉速度而變化,用x表示轉速(單位:轉/秒),用y表示每小時生產的有缺點物件個數,現觀測得到的4組觀測值為.
(1)假定y與x之間有線性相關關系,求y對x的回歸直線方程.
(2)若實際生產中所容許的每小時最大有缺點物件數為10,則機器的速度不得超過多少轉/秒?(精確到1轉/秒)
回歸直線的斜率和截距的最小二乘估計公式分別為:,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商品銷售價格和銷售量與銷售天數有關,第x天的銷售價格(元/百斤),第x天的銷售量(百斤)(a為常數),且第7天銷售該商品的銷售收入為2009元.
(1)求第10天銷售該商品的銷售收入是多少?
(2)這20天中,哪一天的銷售收入最大?為多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標坐標系中,曲線的參數方程為(為參數),以直角坐標系的原點為極點,以軸的正半軸為極軸建立極坐標系,已知直線的極坐標方程為.
(1)求曲線的普通方程;
(2)若與曲線相切,且與坐標軸交于兩點,求以為直徑的圓的極坐標方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線:,:,則下面結論正確的是( )
A. 把上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線
B. 把上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線
C. 把上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線
D. 把上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,已知直線的參數方程是 (m>0,t為參數),曲線的極坐標方程為.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)若直線與軸交于點,與曲線交于點,且,求實數的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某少兒游泳隊需對隊員進行限時的仰臥起坐達標測試.已知隊員的測試分數與仰臥起坐
個數之間的關系如下:;測試規(guī)則:每位隊員最多進行三組測試,每組限時1分鐘,當一組測完,測試成績達到60分或以上時,就以此組測試成績作為該隊員的成績,無需再進行后續(xù)的測試,最多進行三組;根據以往的訓練統(tǒng)計,隊員“喵兒”在一分鐘內限時測試的頻率分布直方圖如下:
(1)計算值;
(2)以此樣本的頻率作為概率,求
①在本次達標測試中,“喵兒”得分等于的概率;
②“喵兒”在本次達標測試中可能得分的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本大題滿分12分)
隨著互聯網的快速發(fā)展,基于互聯網的共享單車應運而生,某市場研究人員為了了解共享單車運營公司的經營狀況,對該公司最近六個月的市場占有率進行了統(tǒng)計,并繪制了相應的折線圖:
(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合月度市場占有率與月份代碼之間的關系,求關于的線性回歸方程,并預測公司2017年4月的市場占有率;
(Ⅱ)為進一步擴大市場,公司擬再采購一批單車,現有采購成本分別為元/輛和1200元/輛的、兩款車型可供選擇,按規(guī)定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會導致單車使用壽命各不相同,考慮到公司運營的經濟效益,該公司決定先對這兩款車型的單車各100輛進行科學模擬測試,得到兩款單車使用壽命的頻數表如下:
經測算,平均每輛單車每年可以帶來收入500元,不考慮除采購成本之外的其他成本,假設每輛單車的使用壽命都是整數年,且以頻率作為每輛單車使用壽命的概率,如果你是公司的負責人,以每輛單車產生利潤的期望值為決策依據,你會選擇采購哪款車型?
參考公式:回歸直線方程為,其中,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】 設命題p:函數y=在定義域上為減函數;命題q:a,b∈(0,+∞),當a+b=1時,+=3.以下說法正確的是( )
A. p∨q為真B. p∧q為真
C. p真q假D. p,q均假
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com