5.在△ABC中,已知A=30°,B=60°,a=5,則b等于( 。
A.$5\sqrt{3}$B.$10\sqrt{3}$C.$\frac{5}{3}\sqrt{3}$D.$\frac{10}{3}\sqrt{3}$

分析 由已知利用正弦定理即可計(jì)算得解.

解答 解:∵A=30°,B=60°,a=5,
∴由正弦定理可得:b=$\frac{asinB}{sinA}$=$\frac{5×\frac{\sqrt{3}}{2}}{\frac{1}{2}}$=5$\sqrt{3}$.
故選:A.

點(diǎn)評(píng) 本題主要考查了正弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|x2-x-6<0},B={x|$\frac{x+4}{x-2}$>0},則A∩B等于( 。
A.(-2,3)B.(2,3)C.(-4,-2)D.(-4,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知向量$\overrightarrow a$=(2,m),$\overrightarrow b$=(1,1),若$\overrightarrow a$•$\overrightarrow b$=|${\overrightarrow a$-$\overrightarrow b}$|,則實(shí)數(shù)m=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列所給的對(duì)象能構(gòu)成集合的是( 。
A.2019 屆的優(yōu)秀學(xué)生B.高一數(shù)學(xué)必修一課本上的所有難題
C.遵義四中高一年級(jí)的所有男生D.比較接近 1 的全體正數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=ax-x-a(0<a<1)的零點(diǎn)個(gè)數(shù)是( 。
A.1B.0C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.計(jì)算:
(Ⅰ)log525+lg$\frac{1}{100}$+ln$\sqrt{e}$+2${\;}^{{{log}_2}3}}$;
(Ⅱ) 已知a${\;}^{\frac{1}{2}}}$+a${\;}^{-\frac{1}{2}}}$=3(a∈R),求值:$\frac{{{a^2}+{a^{-2}}+1}}{{a+{a^{-1}}+1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.若A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.
(1)若A=B,求a的值;
(2)若B∩A≠∅,C∩A=∅,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某舞步每一節(jié)共六步,其中動(dòng)作A兩步,動(dòng)作B兩步,動(dòng)作C兩步,同一種動(dòng)作不一定相鄰,則這種舞步一共有多少種不同的變化(  )
A.180種B.120種C.90種D.80種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=sin(ωx-$\frac{π}{6}$)+$\frac{1}{2}$,x∈R,且f(α)=-$\frac{1}{2}$.f(β)=$\frac{1}{2}$,若|α-β|的最小值為$\frac{3π}{4}$,則ω的值為( 。
A.$\frac{4}{3}$B.$\frac{2}{3}$C.1D.$\frac{8}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案