A. | y=x2-4x+5 | B. | y=log${\;}_{\frac{1}{2}}$x | C. | y=2-x | D. | y=$\sqrt{x}$ |
分析 利用二次函數(shù)性質(zhì),對(duì)數(shù)函數(shù),指數(shù)函數(shù)以及底數(shù)函數(shù)的性質(zhì)判斷即可.
解答 解:A、y=x2-4x+4+1=(x-2)2+1,在區(qū)間[0,2]上是減函數(shù);
B、y=log${\;}_{\frac{1}{2}}$x,在區(qū)間[0,2]上是減函數(shù);
C、y=2-x,在區(qū)間[0,2]上是減函數(shù);
D、y=$\sqrt{x}$,在區(qū)間[0,2]上是增函數(shù),
故選:D.
點(diǎn)評(píng) 此題考查了函數(shù)單調(diào)性的判斷與證明,熟練掌握各函數(shù)的單調(diào)性是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3\sqrt{5}}{5}$+1 | B. | $\frac{3\sqrt{5}}{5}-1$ | C. | $\frac{6\sqrt{5}}{5}$+1 | D. | $\frac{6\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | -$\frac{\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)在(-$\frac{π}{2}$,$\frac{π}{4}$)上是遞增的 | B. | f(x)在定義域上單調(diào)遞增 | ||
C. | f(x)的最小正周期為π | D. | f(x)的所有對(duì)稱中心為($\frac{kπ}{4}$,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x>1,x2≤x | B. | $?{x}_{0}>1,{x}_{0}^{2}>{x}_{0}$ | ||
C. | $?{x}_{0}≤1,{x}_{0}^{2}≤{x}_{0}$ | D. | $?{x}_{0}>1,{x}_{0}^{2}<{x}_{0}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com