【題目】已知.
(1)解關(guān)于的不等式
;
(2)若不等式的解集為
,求實數(shù)
的值.
【答案】(1);(2)
.
【解析】試題分析:(1)由f(1)=-3+a(6-a)+6=-a2+6a+3,得a2-6a-3<0,求解即可;
(2)f(x)>b的解集為(-1,3)等價于方程-3x2+a(6-a)x+6-b=0的兩根為-1,3,由根與系數(shù)的關(guān)系求解即可.
試題解析:
(1)∵f(x)=-3x2+a(6-a)x+6,
∴f(1)=-3+a(6-a)+6=-a2+6a+3,
∴原不等式可化為a2-6a-3<0,解得3-2<a<3+2
.
∴原不等式的解集為{a|3-2<a<3+2
}
(2)f(x)>b的解集為(-1,3)等價于方程-3x2+a(6-a)x+6-b=0的兩根為-1,3,
等價于解得
.
科目:高中數(shù)學 來源: 題型:
【題目】由于疫情影響,今年我們學校開展線上教學,高一年級某班班主任為了了解學生上網(wǎng)學習時間,對本班40名學生某天上網(wǎng)學習時間進行了調(diào)查,將數(shù)據(jù)(取整數(shù))整理后,繪制出如圖所示頻率分布直方圖,已知從左到右各個小組的頻率分別是0.15,0.25,0.35,0.20,0.05,則根據(jù)直方圖所提供的信息.
(1)這一天上網(wǎng)學習時間在分鐘之間的學生有多少人?
(2)這40位同學的線上平均學習時間是多少?
(3)如果只用這40名學生這一天上網(wǎng)學習時間作為樣本去推斷該校高一年級全體學生該天的上網(wǎng)學習時間,這樣推斷是否合理?為什么?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)2017年招聘員工,其中A、B、C、D、E五種崗位的應(yīng)聘人數(shù)、錄用人數(shù)和錄用比例(精確到1%)如下:
(Ⅰ)從表中所有應(yīng)聘人員中隨機選擇1人,試估計此人被錄用的概率;
(Ⅱ)從應(yīng)聘E崗位的6人中隨機選擇1名男性和1名女性,求這2人均被錄用的概率;
(Ⅲ)表中A、B、C、D、E各崗位的男性、女性錄用比例都接近(二者之差的絕對值不大于5%),但男性的總錄用比例卻明顯高于女性的總錄用比例.研究發(fā)現(xiàn),若只考慮其中某四種崗位,則男性、女性的總錄用比例也接近,請寫出這四種崗位.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】大型活動即將舉行,為了做好接待工作,組委會招募了名男志愿者和
名女志愿者,調(diào)查發(fā)現(xiàn),男、女志愿者中分別有
人和
人喜愛運動,其余人不喜愛運動.
(1)根據(jù)以上數(shù)據(jù)完成以下列聯(lián)表:
喜愛運動 | 不喜愛運動 | 總計 | |
男志愿者 | |||
女志愿者 | |||
總計 |
(2)根據(jù)列聯(lián)表判斷能否有℅的把握認為性別與喜愛運動有關(guān)?
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式: ,其中
)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的一系列對應(yīng)值如下表:
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的一個解析式;
(2)根據(jù)(1)的結(jié)果,若函數(shù)周期為
,當
時,方程
恰有兩個不同的解,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果雙曲線的離心率e=,則稱此雙曲線為黃金雙曲線.有以下幾個命題:①雙曲線
是黃金雙曲線;②雙曲線
是黃金雙曲線;③在雙曲線
(a>0,b>0)中,F1為左焦點,A2為右頂點,B1(0,b),若∠F1B1A2=90°,則該雙曲線是黃金雙曲線;④在雙曲線
(a>0,b>0)中,過右焦點F2作實軸的垂線交雙曲線于M,N兩點,O為坐標原點,若∠MON=120°,則該雙曲線是黃金雙曲線.其中正確命題的序號為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點是拋物線
的焦點,
是拋物線
在第一象限內(nèi)的點,且
,
(I) 求點的坐標;
(II)以為圓心的動圓與
軸分別交于兩點
,延長
分別交拋物線
于
兩點;
①求直線的斜率;
②延長交
軸于點
,若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的長軸與短軸之和為6,橢圓上任一點到兩焦點
,
的距離之和為4.
(1)求橢圓的標準方程;
(2)若直線:
與橢圓交于
,
兩點,
,
在橢圓上,且
,
兩點關(guān)于直線
對稱,問:是否存在實數(shù)
,使
,若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com