( (本小題滿分13分)

已知橢圓+=1(a>b>0)的一個焦點坐標(biāo)為(,0),短軸一頂點與兩焦點連線夾角為120°.

(1)求橢圓的方程;   

(2)設(shè)直線l與橢圓相交于不同的兩點AB,已知點A的坐標(biāo)為(-a,0),點Q(0,m)在線段AB的垂直平分線上且·≤4,求m的取值范圍.

 

【答案】

解:(1)由題意知a=2b,c=,a2b2c2

解得a=2,b=1

∴橢圓方程為+y2=1.(4分)

(2)由(1)可知A(-2,0),設(shè)B點坐標(biāo)為(x1,y1),

直線l的方程為yk(x+2)

于是A、B兩點的坐標(biāo)滿足方程組 

由方程消去y并整理得

(1+4k2)x2+16k2x+16k2-4=0

由-2x1=得x1=,從而y1

設(shè)線段AB的中點為M,則M的坐標(biāo)為(-,)(7分)

以下分兩種情況:

①當(dāng)k=0時,點B的坐標(biāo)為(2,0),線段AB的垂直平分線為y軸,

于是=(-2,-m),=(2,-m),

由·≤4

得:-2≤m≤2.(9分)

②當(dāng)k≠0時,線段AB的垂直平分線方程為

y-=-(x+)

x=0,得m=-

由·=-2x1m(y1m)

=+ (+)

          =≤4

解得-≤k≤且k≠0(10分)

m=-=-

∴當(dāng)-≤k<0時, +4k≤-4

  當(dāng)0<k≤時,+4k≥4

∴-≤m≤,且m≠0(12分)

綜上所述,-≤m≤,且m≠0.(13分)

 

 

 

 

 

高考資源網(wǎng)(www.ks5u.com)

 

 

 

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省惠州市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù)經(jīng)過點.

(1)求的值;(2)求在[0,1]上的最大值與最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三11月月考文科數(shù)學(xué) 題型:解答題

(本小題滿分13分,(Ⅰ)小問6分,(Ⅱ)小問7分. )

已知是首項為19,公差為-2的等差數(shù)列,的前項和.

(Ⅰ)求通項;

(Ⅱ)設(shè)是首項為1,公比為3的等比數(shù)列,求數(shù)列的通項公式及其前項和.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三11月月考文科數(shù)學(xué) 題型:解答題

(本小題滿分13分,(Ⅰ)小問7分,(Ⅱ)小問6分.)

設(shè)函數(shù)  

(1)求的最小正周期和值域;

(2)將函數(shù)的圖象按向量平移后得到函數(shù)的圖                    象,求函數(shù)的單調(diào)區(qū)間。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖南省長沙市2010-2011學(xué)年高三年級月考(一)數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿分13分)

       已知是二次函數(shù),不等式的解集是(0,5),且在區(qū)間[-1,4]上的最大值是12。

   (1)求的解析式;

   (2)是否存在自然數(shù),使得方程在區(qū)間內(nèi)有且只有兩個不等的實數(shù)根?若存在,求出的取值范圍;若不存在,說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省莆田市高三畢業(yè)班適應(yīng)性練習(xí)理科數(shù)學(xué) 題型:解答題

 

(本小題滿分13分)

隨機變量X的分布列如下表如示,若數(shù)列是以為首項,以為公比的等比數(shù)列,則稱隨機變量X服從等比分布,記為Q(,).現(xiàn)隨機變量X∽Q(,2).

X

1

2

n

(Ⅰ)求n 的值并求隨機變量X的數(shù)學(xué)期望EX;

(Ⅱ)一個盒子里裝有標(biāo)號為1,2,…,n且質(zhì)地相同的標(biāo)簽若干張,從中任取1張標(biāo)簽所得的標(biāo)號為隨機變量X.現(xiàn)有放回的從中每次抽取一張,共抽取三次,求恰好2次取得標(biāo)簽的標(biāo)號不大于3的概率.

 

 

查看答案和解析>>

同步練習(xí)冊答案