給出封閉函數(shù)的定義:若對于定義域內(nèi)任意一個自變量x都有函數(shù)值f(x0)∈D,則稱函數(shù)y=f(x)在D上封閉.若定義域D=(0,1),則下列函數(shù)為封閉函數(shù)的是
①f1(x)=4x-1、趂2(x)=-數(shù)學(xué)公式x2-數(shù)學(xué)公式x+1、踗3(x)=x+數(shù)學(xué)公式、躥4(x)=數(shù)學(xué)公式


  1. A.
    ①②
  2. B.
    ③④
  3. C.
    ①③
  4. D.
    ②④
D
分析:根據(jù)封閉函數(shù)的定義,當(dāng)定義域D=(0,1)時,對①②③④逐個分析即可得答案.
解答:當(dāng)定義域D=(0,1)時,顯然①f1(x)=4x-1∉D,不是封閉函數(shù);
對于②,f2(x)=-x2-x+1=+,
∵0<x<1,
∴f2(x)在(0,]上單調(diào)遞減,[,1)上單調(diào)遞增;
∴f2(x0)∈[,1]?(0,1)=D,即②是封閉函數(shù);
對于③,當(dāng)定義域D=(0,1)時,f3(x)=x+∈(2,+∞),顯然不是封閉函數(shù);
對于④,當(dāng)定義域D=(0,1)時,f4(x)=∈(0,1)=D,即④是封閉函數(shù);
綜上所述,②④是封閉函數(shù).
故選D.
點(diǎn)評:本題考查函數(shù)的值域,考查一次函數(shù)、二次函數(shù)、雙鉤函數(shù)與冪函數(shù)的性質(zhì),考查分析與運(yùn)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出封閉函數(shù)的定義:若對于定義域D內(nèi)的任意一個自變量x0,都有函數(shù)值f(x0)∈D,則稱函數(shù)y=f(x)在D上封閉.若定義域D=(0,1),則函數(shù)①f1(x)=3x-1;②f2(x)=-
1
2
x2-
1
2
x+1;③f3(x)=1-x;④f4(x)=x,其中在D上封閉的是
 
.(填序號即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出封閉函數(shù)的定義:若對于定義域D內(nèi)的任意一個自變量x0,都有函數(shù)值f(x0)∈D,則稱函數(shù)y=f(x)在D上封閉.若定義域D=(0,1),則函數(shù)①f(x)=3x-1;②f(x)=-
1
2
x2-
1
2
x+1
;③f(x)=log2(x2+1);④f(x)=x
1
2
,其中在D上封閉的是
②③④
②③④
.(填序號即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出封閉函數(shù)的定義:若對于定義域內(nèi)任意一個自變量x都有函數(shù)值f(x0)∈D,則稱函數(shù)y=f(x)在D上封閉.若定義域D=(0,1),則下列函數(shù)為封閉函數(shù)的是( 。
①f1(x)=4x-1  ②f2(x)=-
1
2
x2-
1
2
x+1  ③f3(x)=x+
1
x
  ④f4(x)=x
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年福建省泉州七中高二(下)期中數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

給出封閉函數(shù)的定義:若對于定義域D內(nèi)的任意一個自變量x,都有函數(shù)值f(x)∈D,則稱函數(shù)y=f(x)在D上封閉.若定義域D=(0,1),則函數(shù)①f1(x)=3x-1;②f2(x)=-x2-x+1;③f3(x)=1-x;④f4(x)=x,其中在D上封閉的是    .(填序號即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)(文科)一輪復(fù)習(xí)講義:2.6 冪函數(shù)(解析版) 題型:填空題

給出封閉函數(shù)的定義:若對于定義域D內(nèi)的任意一個自變量x,都有函數(shù)值f(x)∈D,則稱函數(shù)y=f(x)在D上封閉.若定義域D=(0,1),則函數(shù)①f1(x)=3x-1;②f2(x)=-x2-x+1;③f3(x)=1-x;④f4(x)=x,其中在D上封閉的是    .(填序號即可)

查看答案和解析>>

同步練習(xí)冊答案