已知ai,bi∈R,(i=1,2,3,…,n),a12+a22+…+an2=1,b12+b22+…+bn2=1,則a1b1+a2b2+…+anbn的最大值為( )
A.
B.
C.2
D.1
【答案】分析:利用基本不等式可求.
解答:解:由題意,利用基本不等式得 a1b1+a2b2+…+anbn
故選D
點(diǎn)評(píng):本題主要考查基本不等式的運(yùn)用,用注意定理得使用條件,屬于基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知ai,bi∈R,(i=1,2,3,…,n),a12+a22+…+an2=1,b12+b22+…+bn2=1,則a1b1+a2b2+…+anbn的最大值為( 。
A、n
2
B、2
n
C、2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山西省山大附中2009-2010學(xué)年高二下學(xué)期3月月考理科數(shù)學(xué)試題 題型:013

已知ai,bi∈R,(i=1,2,3,…,n),a12+a22+…+an2=1,b12+b22+…+bn2=1,則a1b1+a2b2+…+anbn的最大值為

[  ]
A.

n

B.

2

C.

2

D.

1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知ai,bi∈R,(i=1,2,3,…,n),a12+a22+…+an2=1,b12+b22+…+bn2=1,則a1b1+a2b2+…+anbn的最大值為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    2
  4. D.
    1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知ai,bi∈R,(i=1,2,3,…,n),a12+a22+…+an2=1,b12+b22+…+bn2=1,則a1b1+a2b2+…+anbn的最大值為( 。
A.n
2
B.2
n
C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案